@article{SchinzelThuenemannLoehr2014, author = {Schinzel, Sebastian and Th{\"u}nemann, Maximilian and L{\"o}hr, Dennis}, title = {Internetzensus - Das Internet scannen und auf Schwachstellen untersuchen}, series = {iX - Security kompakt}, journal = {iX - Security kompakt}, number = {4}, issn = {4018837005}, year = {2014}, language = {de} } @article{SchinzelSchmitt2012, author = {Schinzel, Sebastian and Schmitt, Isabell}, title = {{\"U}ber Umwege - Seitenkanalangriffe auf Netzwerkanwendungen}, series = {iX - Magazin f{\"u}r professionelle Informationstechnik}, journal = {iX - Magazin f{\"u}r professionelle Informationstechnik}, number = {11}, year = {2012}, language = {mul} } @article{SchinzelWeidemannWiegensteinetal.2011, author = {Schinzel, Sebastian and Weidemann, Frederik and Wiegenstein, Andreas and Schumacher, Markus}, title = {SAP-Security - Sicherheitsl{\"o}cher in eigenem ABAP-Code stopfen}, series = {iX - Magazin f{\"u}r professionelle Informationstechnik}, journal = {iX - Magazin f{\"u}r professionelle Informationstechnik}, number = {07}, year = {2011}, language = {mul} } @article{Schinzel2012, author = {Schinzel, Sebastian}, title = {Side Channel Attacks: Error messages and verbose log entries can tip off intruders}, series = {LINUX Magazine}, journal = {LINUX Magazine}, number = {\#143}, year = {2012}, language = {en} } @article{Schinzel2012, author = {Schinzel, Sebastian}, title = {Seitenkan{\"a}le mit Untiefen: Manche Webanwendungen spielen Angreifern unfreiwillig Informationen zu}, series = {ADMIN Magazin}, journal = {ADMIN Magazin}, year = {2012}, language = {de} } @article{GierlingSaatjohannDresenetal.2020, author = {Gierling, Markus and Saatjohann, Christoph and Dresen, Christian and K{\"o}be, Julia and Rath, Benjamin and Eckardt, Lars and Schinzel, Sebastian}, title = {Reviewing Cyber Security Research of Implantable Medical Rhythm Devices regarding Patients' Risk}, series = {86. Jahrestagung und Herztage 2020 der DGK}, volume = {Band 109, Supplement 1, April 2020}, journal = {86. Jahrestagung und Herztage 2020 der DGK}, doi = {10.1007/s00392-020-01621-0}, pages = {1 -- 2}, year = {2020}, abstract = {Introduction: The recent publication of several critical cyber security issues in cardiac implantable devices and the resulting press coverage upsets affected users and their trust in medical device producers. Reviewing the published security vulnerabilities regarding networked medical devices, it raises the question, if the reporting media, the responsible security researchers, and the producers handle security vulnerabilities appropriately. Are the media reports of security vulnerabilities in medical devices meaningful in a way that patients can assess their respective risk for an attack via the security vulnerability? The collaboration between IT-security experts and clinicians aims at reviewing published security vulnerabilities of rhythm devices, and evaluate overall patients risks. Methodology: We performed a literature review on security vulnerabilities in implantable medical devices with a focus on cardiac devices. We analyzed (Fig. 1) the (1) requirements for an attacker and the (2) technical feasibility and clustered them in three different scenarios: The first scenario requires that the attacker physically approaches a victim with a programming device. The second scenario requires proximity to the victim, e.g., within a few meters. The third and strongest attacker scenario is a remote attack that doesn't require any physical proximity to the victim. We then compare the attacker scenarios and (3) the overall patients' risks with the press coverage (overhyped, adequate, underhyped). (4) The resulting overall patients' risk was rated by clinicians (security vulnerability of patients' data, dangerous programming possible). Results: Out of the three analyzed incidents, we found one to be underhyped, one to be overhyped, and one was appropriate compared to the medial coverage (Fig. 2). The most occurring technical issues were based on the absence of basic security primitives. The patient damage for all of the analyzed incidents was fatal in the worst-case scenario. Further, the patient damage and the overall patient risks are disjunct due to the missing capability of performing large scale attacks. Conclusion: The resulting overall patients' risks may not adequately reflect the patient damage in the considered cases. Often, the overall patient risk is not as severe as the necessary attacker capabilities are high and it would require strongly motivated attackers to perform the attack. Therefore, most of the reviewed cases are considered with a smaller overall patient risk than implied by press reports. Reviewing the ongoing IT-Security trends regarding implantable medical devices shows an increasing focus on researching in the field of medical device security. Therefore, further findings in the near future are to be expected. To deal with this fact in a responsible way, proper proactive knowledge management is mandatory. We recommend medical staff to critically reflect reports in mass media due to possible sensationalism. Therefore, we propose a joint approach in combining the technical expertise of cyber security experts with clinical aspects of medical experts, to ensure a solid understanding of a newly published vulnerability. The combination of both communities promises to result in better predictions for patients' risks from security vulnerabilities in implanted cardiac devices.}, language = {en} } @article{BrinkmannDresenMergetetal.2021, author = {Brinkmann, Marcus and Dresen, Christian and Merget, Robert and Poddebniak, Damian and M{\"u}ller, Jens and Somorovsky, Juraj and Schwenk, J{\"o}rg and Schinzel, Sebastian}, title = {ALPACA: Application Layer Protocol Confusion - Analyzing and Mitigating Cracks in TLS Authentication}, series = {30th USENIX Security Symposium}, journal = {30th USENIX Security Symposium}, year = {2021}, language = {en} } @article{WillingDresenGerlitzetal.2021, author = {Willing, Markus and Dresen, Christian and Gerlitz, Eva and Haering, Maximilian and Smith, Matthew and Binnewies, Carmen and Guess, Tim and Haverkamp, Uwe and Schinzel, Sebastian}, title = {Behavioral responses to a cyber attack in a hospital environment}, series = {Nature -- Scientific Reports}, journal = {Nature -- Scientific Reports}, doi = {10.1038/s41598-021-98576-7}, year = {2021}, abstract = {Technical and organizational steps are necessary to mitigate cyber threats and reduce risks. Human behavior is the last line of defense for many hospitals and is considered as equally important as technical security. Medical staff must be properly trained to perform such procedures. This paper presents the first qualitative, interdisciplinary research on how members of an intermediate care unit react to a cyberattack against their patient monitoring equipment. We conducted a simulation in a hospital training environment with 20 intensive care nurses. By the end of the experiment, 12 of the 20 participants realized the monitors' incorrect behavior. We present a qualitative behavior analysis of high performing participants (HPP) and low performing participants (LPP). The HPP showed fewer signs of stress, were easier on their colleagues, and used analog systems more often than the LPP. With 40\% of our participants not recognizing the attack, we see room for improvements through the use of proper tools and provision of adequate training to prepare staff for potential attacks in the future.}, language = {en} }