@inproceedings{JacobsMesenhoellerJakirlicetal.2023, author = {Jacobs, Steffen and Mesenh{\"o}ller, Eva and Jakirlic, Suad and Vennemann, Peter}, title = {Computational Study of Transient Indoor Airflow with Reference to a Complementary Experiment}, series = {Proceedings of the Tenth International Symposium On Turbulence, Heat and Mass Transfer. K. Hanjalic, D. Borello, K. Suga, P. Venturini (Eds.)}, booktitle = {Proceedings of the Tenth International Symposium On Turbulence, Heat and Mass Transfer. K. Hanjalic, D. Borello, K. Suga, P. Venturini (Eds.)}, editor = {Hanjalic, K. and Borello, D. and Suga, K. and Venturini, P.}, publisher = {Begell House Inc.}, address = {New York, Wallingford}, organization = {ICHMT}, isbn = {978-1-56700-534-9}, issn = {2377-2816}, pages = {681 -- 684}, year = {2023}, abstract = {A novel approach for ventilation systems is a periodically varying supply air flow rate, the so-called unsteady mode of operation. So far, useful effects of this unsteady operating mode have been observed, but the effect mechanisms are still unknown. In this manuscript, simulations using the recently proposed k-ω-ζ - f model implemented in a sensitized RANS computational framework for a cuboid room with swirl diffusers are compared and validated with PIV measurements.}, language = {en} }