@book{WetterBruegging2024, author = {Wetter, Christof and Br{\"u}gging, Elmar}, title = {16. Steinfurter Bioenergiefachtagung - Tagungsband}, address = {Steinfurt}, doi = {10.25974/fhms-17789}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-177896}, publisher = {FH M{\"u}nster - University of Applied Sciences}, pages = {29}, year = {2024}, abstract = {Dieser Tagungsband umfasste eine {\"U}bersicht zu den Vortr{\"a}gen, Ausstellern sowie die Abstracts der Poster-Pr{\"a}sentation auf der 16. Bioenergiefachtagung.}, language = {de} } @masterthesis{Blankenstein2024, type = {Bachelor Thesis}, author = {Blankenstein, Benjamin}, title = {Energiesystemmodellierung von Kasernen}, doi = {10.25974/fhms-17814}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-178144}, school = {FH M{\"u}nster - University of Applied Sciences}, year = {2024}, abstract = {Die Planung urbaner Energiesysteme wird durch die zunehmende Verbreitung sektorgekoppelter Technologien und neuer Verbrauchssektoren immer komplexer. Klassische Planungsmethoden kommen an ihre Grenzen. Die Energiesystemmodellierung (ESM) bietet eine M{\"o}glichkeit, ein Energiesystem hinsichtlich der Kosten und der Treibhausgas (THG)- Emissionen zu optimieren. Gleichzeitig ergibt sich aus der Energiewende und angestrebten THG-Neutralit{\"a}t ein akuter Handlungsbedarf. Dies gilt auch f{\"u}r die 1 500 Kasernen in Deutschland. Im Rahmen dieser Arbeit werden der bestehende Modellierungsprozess des Spreadsheet Energy System Model Generator (SESMG) erweitert, indem Herausforderungen der Modellierung und Optimierung von Kasernen identifiziert und L{\"o}sungsans{\"a}tze hierzu entwickelt werden. Diese Arbeit basiert auf der ESM einer realen Kaserne. Es kann das Urban District Upscaling Tool zur Erstellung der f{\"u}r den SESMG ben{\"o}tigten Modelldefinition verwendet werden. Die Open-Source Datenbank SESMG-Data, kann automatisch die ben{\"o}tigte Standard Parameter Tabelle mit zugeh{\"o}rigem Bericht generieren. Weiterhin wurde ein Energieaustauschmodell vorgestellt, das den Energieaustausch zwischen Kasernen eines Bilanzkreises erm{\"o}glicht. Ein Fokus liegt auf der Abbildung zuk{\"u}nftiger Ausbaupl{\"a}ne. Dazu wurden kasernenspezifische Geb{\"a}udeprofile entwickelt, die gemittelte spezifische Energiebedarfe und weitere Parameter zur Berechnung der Wand-, Fenster-, und Dachfl{\"a}che enthalten. Der spezifische W{\"a}rmebedarf kann durch einen Faktor an die Baualtersklasse angepasst werden. Mit Hilfe statistischer Kennwerte l{\"a}sst sich ein geeignetes Standardlastprofil f{\"u}r verschiedene Geb{\"a}udeprofile ausw{\"a}hlen. Zur Reduktion der Komponenten im Energiesystemoptimierungsmodell (ESOM) k{\"o}nnen die Dachfl{\"a}chenpotenziale von Photovoltaikanlagen zusammengefasst werden. Da Kasernen nur eine Bilanzgrenze besitzen, k{\"o}nnen zudem auch die Strombedarfe der einzelnen Geb{\"a}ude zusammengefasst werden. Damit lassen sich gleichzeitig dezentrale Batteriespeicher als Komponente des ESOMs ausschließen. Die Potenzialfl{\"a}chen von Erdw{\"a}rmepumpen k{\"o}nnen zusammengefasst werden, wobei Abstands- und Belastbarkeitsgrenzen eingehalten werden m{\"u}ssen. Kasernen verf{\"u}gen h{\"a}ufig {\"u}ber Bestandsw{\"a}rmenetze, die im ESOM gesondert ber{\"u}cksichtigt werden m{\"u}ssen. Um dieses Bestandsw{\"a}rmenetz abzubilden, k{\"o}nnen die Verteilleitungen manuell nachgezeichnet werden und in einer Vormodellierung mit dem SESMG mit geringeren Kosten angesetzt werden. Die in dieser Arbeit entwickelten Methoden sind allgemeing{\"u}ltig f{\"u}r Kasernen. Die {\"U}bertragbarkeit der kasernenspezifischen Geb{\"a}udeprofile ist aufgrund der unterschiedlichen Nutzung von Kasernen nur eingeschr{\"a}nkt m{\"o}glich. Der bestehende Modellierungsprozess wurde um kasernenspezifische Prozessschritte erweitert und visualisiert. Zuk{\"u}nftige Modellierungen von Kasernen k{\"o}nnen zur Validierung der Ergebnisse und f{\"u}r weitere Anpassungen, wie z. B. die Erstellung einer kasernenspezifischen Datenbank, genutzt werden.}, language = {de} } @misc{TocklothKlemmBeckeretal.2024, author = {Tockloth, Jan N. and Klemm, Christian and Becker, Gregor and Blankenstein, Benjamin and Vennemann, Peter}, title = {Spreadsheet Energy System Model Generator (SESMG)}, series = {16. Steinfurter Bioenergiefachtagung - Tagungsband}, journal = {16. Steinfurter Bioenergiefachtagung - Tagungsband}, doi = {10.25974/fhms-17820}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-178209}, year = {2024}, abstract = {Die Transformation der Energiesysteme im Rahmen der Energiewende macht diese durch zus{\"a}tzliche Komponenten und Wechselwirkungen immer komplexer. Das {\"o}konomische und {\"o}kologische Potenzial, dass sich aus der Nutzung der Synergien dieser Komponenten ergeben kann, erfordert eine gemeinsame Betrachtung des gesamten Energiesystems hinsichtlich s{\"a}mtlicher Energie- und Verbrauchssektoren. Die Energiesystemmodellierung stellt eine geeignete Methode zur Modellierung und Optimierung dieser urbanen Energiesysteme dar. Mit dem „Spreadsheet Energy System Model Generator" (SESMG) hat die FH M{\"u}nster ein Open Source Tool entwickelt, das die Betrachtung urbaner Quartiere erm{\"o}glicht. Diese k{\"o}nnen hinsichtlich verschiedener Zielkriterien wie z. B. monet{\"a}ren Kosten und THG-Emissionen optimiert werden. Die tabellenbasierte Eingabe erfordert keine Programmierkenntnisse. Das implementierte Urban District Upscaling Tool erleichtert die effektive Modellierung auch gr{\"o}ßerer Systeme. Die automatisierte Ergebnisaufbereitung erm{\"o}glicht eine schnelle Analyse der Ergebnisse.}, language = {de} } @inproceedings{TocklothKlemmBeckeretal.2024, author = {Tockloth, Jan N. and Klemm, Christian and Becker, Gregor and Blankenstein, Benjamin and Vennemann, Peter}, title = {Der Spreadsheet Energy System Model Generator (SESMG): Ein Tool zur Optimierung urbaner Energiesysteme}, series = {16. Steinfurter Bioenergiefachtagung - Tagungsband}, booktitle = {16. Steinfurter Bioenergiefachtagung - Tagungsband}, pages = {18 -- 19}, year = {2024}, abstract = {Der Spreadsheet Energy System Model Generator (SESMG) ist ein Werkzeug zur Modellierung und Optimierung von (urbanen) Energiesystemen. Der SESMG hat eine browserbasierte grafische Benutzeroberfl{\"a}che, eine tabellenbasierte Dateneingabe und eine ausf{\"u}hrliche Dokumentation, was einen einfachen Einstieg erm{\"o}glicht. Zudem erfordern die Installation und Anwendung keine Programmierkenntnisse. Im SESMG sind verschiedene Modellierungsmethoden implementiert, wie z. B. die Anwendung des Multi-Energie-System-Ansatzes, die multikriteriale Optimierung, modellbasierte Methoden zur Reduktion des Rechenaufwands sowie die automatisierte Erstellung von r{\"a}umlich hoch aufgel{\"o}sten Energiesystemmodellen. Somit k{\"o}nnen urbane Energiesysteme mithilfe des SESMGs mit vergleichsweise geringem Aufwand, aber unter Ber{\"u}cksichtigung einer Vielzahl von Parametern und Randbedingungen, modelliert und optimiert werden.}, language = {de} } @article{Kramer2024, author = {Kramer, Kevin}, title = {Water wheels for energy recovery in the outlet of wastewater treatment plants - Using the example of the water wheel at the Warendorf central wastewater treatment plant}, series = {Educational Journal of Renewable Energy Short Reviews}, journal = {Educational Journal of Renewable Energy Short Reviews}, doi = {10.25974/ren_rev_2024_05}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-176423}, pages = {28 -- 32}, year = {2024}, abstract = {The annual wastewater flow that is treated by public wastewater treatment plants in Germany amounts to approx. 10 ∗ 10^9 m3/a and forms an "artificial" hydropower potential that can be used for energy generation or recovery. In the context of this paper, energy recovery in the outlet of wastewater treatment plants is examined using the specific example of the water wheel at the Warendorf central wastewater treatment plant. The "artificial" hydropower potential can be roughly estimated at up to 20 to 105 GWh/a , whereby this is largely dependent on the hydraulic gradient. The strong variance results, among other things, from the findings of the water wheel operation in Warendorf. The decisive aspect here is the differential factor, which describes the deviation between the theoretical and actual energy yield of the water wheel. The factor includes maintenance work, downtimes and insufficient inflows, which are associated with a loss of output. In the case study, the annual energy recovery amounts to approx. 2 \% of the annual electricity consumption of the wastewater treatment plant and can be estimated to 23,500 kWh (2022). In the context of the economic analysis, it can be seen that despite the "low" yield, economic operation is possible if the system is viewed as a long-term investment - payback period of the example is approx. 14,5 years. The 27-year operation (1996 - 2023) of the water wheel at the Warendorf central wastewater treatment plant confirms this and important findings on successful practical operation can be shown in the context of this paper.}, language = {en} } @article{Krehenbrink2024, author = {Krehenbrink, Julian}, title = {Comparison of small wind turbines for urban areas, a market analysis}, series = {Educational Journal of Renewable Energy Short Reviews}, journal = {Educational Journal of Renewable Energy Short Reviews}, doi = {10.25974/ren_rev_2024_06}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-176430}, pages = {33 -- 40}, year = {2024}, abstract = {This document presents a comparative analysis of horizontal and vertical small wind turbines for urban areas in three power classes up to 10 kW in different categories. The main objective was to conduct a market analysis to assess the marketability of these wind energy systems. The aim was to make it easier for potential customers to make a decision. However, due to the limited availability of data, the project encountered considerable difficulties. As a result, the study became a comparative assessment, which led to results that may not be readily transferable to urban environments, slightly missing the original objective of the study. The results underline the difficulties associated with conducting a comprehensive market analysis in this sector and highlight the need for an independent series of tests under specific conditions. The paper concludes with a plea for future research efforts to adapt data collection methods to urban conditions in order to improve the relevance and applicability of such studies in practice.}, language = {en} } @article{Mueller2024, author = {M{\"u}ller, Hendrik}, title = {Fish mortality at hydropower plants - Protection Measures and Solutions}, series = {Educational Journal of Renewable Energy Short Reviews}, journal = {Educational Journal of Renewable Energy Short Reviews}, doi = {10.25974/ren_rev_2024_07}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-176444}, pages = {41 -- 45}, year = {2024}, abstract = {The construction and operation of hydropower plants for energy generation is a major issue in sustainable energy production. Nevertheless, hydropower plants have a negative impact on fish populations. It is crucial to understand the causes and consequences of fish mortality in hydropower plants in order to find sustainable solutions that reconcile the need for energy with the conservation of aquatic ecosystems. This article examines the fish protection measures that can be implemented to reduce fish mortality and maintain ecological balance. Based on the main literature reviewed, this article mainly refers to Germany in terms of studies carried out and hydropower plants.}, language = {en} } @article{Noelken2024, author = {N{\"o}lken, Lukas}, title = {Impact of robotics on the operation and maintenance of offshore wind turbines - A review}, series = {Educational Journal of Renewable Energy Short Reviews}, journal = {Educational Journal of Renewable Energy Short Reviews}, doi = {10.25974/ren_rev_2024_08}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-176456}, pages = {46 -- 52}, year = {2024}, abstract = {This article analyses the impact of robotics on the operation and maintenance (O\&M) of offshore wind turbines (OWTs), with a particular emphasis on the challenges and benefits. As the world's reliance on renewable energy, particularly offshore wind, increases to reduce climate change, the growing number of OWTs requires effective O\&M. Challenges consist of logistics, accessibility and high costs. The paper presents the application of climbing robots, unmanned aerial vehicles and underwater robots to overcome these challenges. The combination of multiple robotic platforms, such as autonomous surface vehicles and autonomous underwater vehicles, represents a collaborative approach to O\&M. Obstacles include the need for accurate navigation, building trust between humans and robots, and research into artificial intelligence. In conclusion, the integration of robotics in O\&M presents considerable advantages, increasing efficiency, safety and cost-effectiveness. Further progress and research into artificial intelligence are crucial in achieving complete automation, which will transform the O\&M of OWTs.}, language = {de} } @article{Ortmann2024, author = {Ortmann, Thiark}, title = {Effects of Noise Emissions from Offshore Wind Turbines on the Marine Environment}, series = {Educational Journal of Renewable Energy Short Reviews}, journal = {Educational Journal of Renewable Energy Short Reviews}, doi = {10.25974/ren_rev_2024_09}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-176460}, pages = {53 -- 60}, year = {2024}, abstract = {The pursuit of Offshore Wind Energy (OWE), integral to the German government's ambitious renewable energy goals raises concerns about the environmental impact of noise emissions on marine life. This paper delves into the theoretical background of Offshore Wind Turbine (OWT) noise, exploring its various phases from the survey to decommission. It examines the types and causes of noise emissions, their effects on marine wildlife and potential mitigation measures. Highlighting the regulatory framework in Germany, the paper emphasises the need for nuanced approaches to balance renewable energy objectives with marine ecosystem preservation.}, language = {en} } @article{Recker2024, author = {Recker, Luis}, title = {State of the art: Corrosion protection for offshore wind turbines}, series = {Educational Journal of Renewable Energy Short Reviews}, journal = {Educational Journal of Renewable Energy Short Reviews}, doi = {10.25974/ren_rev_2024_10}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-176475}, pages = {61 -- 66}, year = {2024}, abstract = {This review paper provides an initial overview of the state of the art of common corrosion protection methods for offshore wind turbines. The functions of the individual corrosion protection methods and their interaction are explained. In addition, the specific corrosion protection of different zones and components of an offshore wind turbine will be discussed. Finally, some information is given on current and possible future developments in this subject area.}, language = {en} }