TY - CONF A1 - Auel, C. A1 - Boes, R.M. T1 - Sediment bypass tunnel design – review and outlook T2 - Proc. ICOLD Symposium - Dams under changing challenges (Schleiss & Boes, eds.), 79th Annual Meeting of ICOLD, Lucerne, Switzerland N2 - Reservoir sedimentation is increasingly affecting the majority of reservoirs all over the world. As many dams are more than 50 years of age, this problem is becoming more and more seriou403s nowadays. Reservoir sedimentation leads to various severe problems such as a decisive decrease of the active reservoir volume leading to both loss of energy production and water available for water supply and irrigation. These problems will intensify in the very next future, because sediment supply tends to increase due to climate change. Therefore coun-termeasures have to be developed. They can be divided into the three main categories sediment yield reduction, sediment routing and sediment removal. This paper focuses on sediment routing by means of sediment bypass tunnels. Sediment bypass tunnels are an effective measure to stop or at least decrease the reservoir sedimentation process. By routing the sediments around the reservoir into the tailwater in case of flood events sediment accumulation of both bed load and suspended load is reduced significantly. However, the number of sediment bypass tunnels in the world is limited primarily due to high investment and above all maintenance costs. The state-of-the-art design criteria of constructing bypass tunnels are summarized herein; major problems such as tunnel invert abrasion are discussed. The need for further research regarding sediment transport in bypass tunnels and invert abrasion is highlighted. Y1 - 2011 UR - https://www.hb.fh-muenster.de/opus4/frontdoor/index/index/docId/15163 UR - https://nbn-resolving.org/urn:nbn:de:hbz:836-opus-151631 SN - 978-0-415-68267-1 SP - 403 EP - 412 PB - Taylor and Francis CY - London, UK ER -