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Abstract

This thesis describes the development of Multi-part Nanocubes. It is a further development
of Nanocubes, an in-memory data structure for spatiotemporal data cubes. Partitioning the
structure to parallelize the build process as well as merging query results is the principal part
of this document. Furthermore, a new memory management (slab allocation with offset
pointers) was implemented to enable 32-bit support and faster load times of already built
nanocubes. Porting the project to Windows and implementing on-the-fly compression and
decompression of nanocube files is also described.
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3 Introduction

3.1 Motivation

Yellow Pages is known for their telephone directory of businesses. Nowadays, they also offer
their services online and are active in the online marketing industry. Among other things they
offer personalized location based advertising. For example, they can restrict ad campaigns to
select U.S. states or only show the ad if you are close to a store of the advertiser. Many more
filters can be applied to target a specific group of people.

Real-time bidding (RTB) is a modern way of online marketing adopted by the mobile and
desktop advertising industry. Companies like Smaato Inc., MoPub Inc., Nexage LLC, Tapad
Inc., and many more provide software development kits (SDK) that app/web developers
use to take part in their RTB system. Smart phone apps and websites using the SDK will
trigger an auction, offering their advertising space every time they are about to show an
advertisement. The auction is hosted on the RTB ad exchange platform the SDK is bound to.
Companies running Demand-side platforms (DSP) like Yellow Pages (YP) and others, have
contracts with ad exchange platform providers to take part of the advertising space auctions.
They receive a notification with information about each auction. If a DSP calculates (within
milliseconds) that an advertising space is worth buying for their customer, they will respond
with the amount of money they are willing to spend. If the DSP wins the bid, their client’s
advertisement will be shown.

The requests sent for an auction contain, among many other things, an ad exchange platform
specific user id, operating system, app name and if procurable even the exact position of the
phone. This allows DSPs to build user profiles over time and use them to make better decisions
while bidding. With the help of statistics and by cross-referencing external data, those profiles
can contain predictions of the phone owner’s home and work address, income range and
more.

Huge amounts of data are sent through RTB systems. Yellow Pages for instance collected
over a petabyte of raw, uncompressed bid requests in text format from several ad exchange
platforms in about 600 days. The requests answered during a single Papa John’s Pizza ad-
vertising campaign with 16746730 impressions take up to 15GB of disk space in raw text
format.

Yellow Pages is interested in visualizing this kind of big data. Campaign managers and
sales people could gain confidence about their advertising strategy and the data in general by
filtering and visually browsing through a heat map generated from a data set of interest. Not
only would this allow them to check, examine and verify a strategy, it would also help them
to plan a sophisticated strategy by, for example, analyzing the movement of (specific) people
over time to make user stories evident. Nobody else offers this kind of information.
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Considering the magnitude of data, it became apparent that a real-time visualization of
such big data would require computing power of the same order of magnitude. In other
words: A big server was needed. Fortunately, this kind of problem can be reduced to the point
that it can now be solved by a modern laptop. The award winning technology Nanocubes,
developed at the Information Visualization department at AT&T Labs Research, is designed
to serve real-time visualizations of such huge spatiotemporal1 data sets. The technology aims
to minimize memory consumption and maximize query speed. Furthermore, the interface
and the level of detail of the visualization is market leading, which is why Nanocubes was
chosen to visualize YP’s datasets.

Figure 3.1: Nanocube web client visualization of 6.9 million data points. Comparing Denver
with Las Vegas in terms of age, income and many more categories.

3.2 Objective

The currently2 official nanocube C++ implementation is hosted on GitHub3. A new unoffi-
cial implementation of nanocubes exists, which eliminates inconveniences that came with the
old template heavy C++ implementation. The official code needs to be compiled separately
for every nanocube variation of interest e.g. different numbers of categories. Moreover, the
new code implements an Optimal Nanocube Insert Algorithm, which fixes a redundance imper-
fection in the old build algorithm by inspecting the quadtree4 insertion path more precisely
for nodes that can be shared or must be copied. Saving and loading of built nanocubes is now
also possible with the new code.

Nevertheless, the new C++ implementation had limitations that are tackled and solved in
this thesis:

1A spatiotemporal data point is composed of a position in space and a point in time
2September 9, 2016
3https://github.com/laurolins/nanocube
4see chapter 4 Nanocubes
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• The build time of a nanocube can be tedious.

• Loading built nanocubes is protracted due to ASLR5.

• Saving & loading built nanocubes does not support compression.

• 32-bit systems are not supported.

• Windows is not supported.

Solving the first two points does facilitate the everyday usage and increases the productivity
when working with nanocubes decisively. Solving them is the principal part of this document.
The first point is addressed in chapter 5 Multi-part Nanocubes, which describes how to split
up a nanocube, calculate the parts concurrently and merge their query results. The vast
speedup in build time is shown in section 5.3 Benchmarks. The second point is addressed in
chapter 6 Save and Load, in which coincidentally point four gets solved as well (see section 6.2
32-bit Support). Section 6.1 Compression tackles point three. Lastly, chapter 7 Nanocubes
on Windows addresses the remaining limitation on this list.

5 “Address space layout randomization (ASLR) is a computer security technique involved in protection from
buffer overflow attacks.” - https://en.wikipedia.org/wiki/Address_space_layout_randomization
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4 Nanocubes

This chapter is an introduction to the nanocube technology. Nanocubes is based on a client-
server model. The server builds up the nanocube data-structure and performs queries from
the clients on it. Nanocubes comes with a web client written “in Javascript, HTML5, SVG,
WebGL, and D3”1, which is publicly available. Another nanocube client is being written in
C++ by Lauro Lins. It “uses OpenGL for efficient rendering”2, but is at this point in time3

not released to the public.
François-Xavier Pineau wrote a YouTube comment4, in which he couched the idea of

nanocubes into one single sentence:

“Nanocubes is a data structure storing at various spatial resolutions precomputed
sets of dense cumulative histograms.”
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Fig. 2. An illustration of how to build a nanocube for five points [o1, . . . ,o5] under schema S. The complete process is described in Section 4.

Section 4, we show how to construct a data cube that fits in the main
memory of a modern laptop computer or workstation, extending the
work of Sismanis et al. [31]. In addition, the query times to build the
visual encodings in which we are interested will be at most proportional
to the size of the output, which is bounded by the number of screen
pixels (within a small factor). This is an important observation: the time
complexity of a visualization algorithm should ideally be bounded the
number of pixels it touches on the screen. Our technique enables real-
time exploratory visualization on datasets that are large, spatiotemporal,
and multidimensional. Because the speed of our data cube structure
hinges partly on it being small enough to fit in main memory, we call it
a nanocube.

By real-time, we mean query times on average under a millisecond
for a single thread running on computers ranging from laptops, to
workstations, to server-class computing nodes (Section 6). By large,
we mean that the datasets we support have millions to billions of entries.

By spatiotemporal, we mean that nanocubes support queries typical
of spatial databases, such as counting events in a spatial region that
can be either a rectangle covering most of the world, or a heatmap
of activity in downtown San Francisco (Section 4.3.1). By the same
token, nanocubes support temporal queries at multiple scales, such
as event counts by hour, day, week, or month over a period of years
(Section 4.3.3). Data cubes in general enable the Visual Information-
Seeking Mantra [29] of “Overview first, zoom and filter, then details-
on-demand” by providing summaries and letting users drill down by
expanding along the wanted dimensions. Nanocubes also provide
overviews, filters, zooming, and details-on-demand inside the spa-
tiotemporal dimensions themselves.

By multidimensional, we mean that besides latitude, longitude, and
time, each entry can have additional attributes (see section 6) that can
be used in query selections and rollups.

As we will show, nanocubes lend themselves very well to building
visual encodings which are fundamental building blocks of interac-
tive visualization systems, such as scatterplots, histograms, parallel
coordinate plots, and choropleth maps. In summary, we contribute:

• a novel data structure that improves on the current state of the art
data cube technology to enable real-time exploratory visualization
of multidimensional, spatiotemporal datasets;

• algorithms to query the nanocube and build linked and brushable
visual encodings commonly found in visualization systems; and

• case studies highlighting the strengths and weaknesses of our

technique, together with experiments to measure its utilization of
space, time, and network bandwidth.

2 RELATED WORK

Relational databases are so widespread and fundamental to the practice
of computing that they were a natural target for information visualiza-
tion almost since the field’s inception [20]. Mackinlay’s Automatic
Presentation Tool is the breakthrough result that critically connected the
relational structure of the data with the graphical primitives available
for display [23] and ultimately lead to data cube visualization tools
like Polaris [34, 35] and Show Me [24]. Nanocubes are specifically
designed to speed up queries for spatiotemporal data cubes, and could
eventually be used as a backend for these types of applications.

In contrast, some of the work in large data visualization involves
shipping the computation and data to a cluster of processing nodes.
While parallelism is an attractive option for increasing throughput, it
does not necessarily help achieve low latency, which is essential for
fluid interactions with a visualization tool. As a result, sophisticated
techniques such as query prediction become necessary [6]. Leveraging
the enormous power of graphics processing units has also become
popular [25, 21], but without algorithmic changes, linear scans through
the dataset will still be too slow for fluid interaction, even with GPUs.

Another popular way to cope with large datasets is through sampling.
Statistical sampling can be performed on the database backend [26, 1,
10, 14], or on the front-end [11]. Still, the techniques we introduce
with nanocubes can produce results quickly and exactly (to within
screen precision) without requiring approximations, which we believe
is preferable. In addition, as Liu et al. argue, sampling by itself is not
sufficient to prevent overplotting, and might actually mask important
data outliers [21].

Fekete and Plaisant have proposed modifications of traditional visual
encodings which use the computer screen more efficiently [13]. These
scale better with dataset size, but nevertheless require a traversal of
all input data points that renders the proposal less attractive for larger
datasets. Carr et al. were among the first to propose techniques replac-
ing a scatterplot with an equivalent density plot [5]; nanocubes enable
these visualizations at a variety of dataset sizes and scales.

Careful data aggregation [17], then, appears to be one of the few
scalable solutions for low-latency large data graphics. While Elmqvist
and Fekete propose variations of visualization techniques that include
aggregation as a first-class citizen [12], in this paper we show how to
issue queries such that, at the screen resolution in which the application
is operating, the result is indistinguishable (or close to) from a complete

Figure 4.1: “An illustration of how to build a nanocube for five points [o1,...,o5]” 5

The above figure from the nanocubes paper helps to understand this summarization. It
illustrates how a nanocube gets built up by inserting point after point. The five points given
have a geological position and a mobile phone operating system, either Android or iOS,

1[LKS13] Lauro Lins, Jim Klosowski, and Carlos Scheidegger (2013): Nanocubes for Real-Time Exploration
of Spatiotemporal Datasets, IEEE InfoVis 2013, p. 6, sect. 5 Implementation

2cf. fn.footnote 1
3September 9, 2016
4https://www.youtube.com/watch?v=8P9QA6TJwys
5[LKS13] Lins, Klosowski, and Scheidegger (2013), fig. 2, p. 2
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associated to them (see the world map in the upper left corner). The nanocubes discussed in
this document have all a spatial dimension, which is represented in the form of a quadtree.
The two boxes on the left, labeled lspatial1 and lspatial2, show the basic idea of a quadtree in
this context. A world map gets divided into smaller and smaller squares with each level of
resolution. Squares resp. child nodes in the quadtree, which do not contain points, are left
out to save storage space. The white nodes in the graphic of the build process represent the
quadtree. The top node is called root node and represents a square holding the whole world
map. Each node can have up to four child nodes. With each step down the quadtree, the
position on the world map is more precisely circumscribed. Usually twenty-five levels are
used to reach a sensible resolution. Each node of the quadtree can be asked for its content. In
the visualization of the build process, a blue arrow points to the content of a quadtree node.
The content of a quadtree node is a root node of another tree structure, which represents the
categorical dimension. This second tree structure can be referred to as a flat tree, because it
always has a depth of one. It consists of a root node with as many child nodes as there are
points with different categories associated to the parent quadtree node. Flat tree nodes have
content, too. It is a time series of the points that match the position circumscribed by the
placed over quadtree node as well as the categorical classification defined by the parent flat tree
node. Nodes in both tree structures share content between them to avoid redundant copies
of the same content (see dotted arrows). Note that the content of a parent node is always the
summarization of the content of its child nodes. This enables very fast querying of the data
structure, because there are precomputed time series for every resolution in the spatial as well
as in the categorical dimension. The time series are stored as “a sparse variant of summed-area
tables”6, which minimizes the memory footprint and enables fast computation methods to
determine the number of points in a specific time span. Read section 4.3.3 Temporal Queries
of the nanocube paper7 for more details.

4.1 Building a Nanocube from raw data

To build a nanocube data-structure, raw data points need to be converted into a particular
format first. The file format is called DMP (dump file) and is basically a pre-aggregation
of equivalent data points stored in a space efficient binary way. For example, a DMP file
generated from Chicago crime statistics can look like this:

name: crime50k.csv
encoding: binary
metadata: location__origin degrees_mercator_quadtree25
field: location nc_dim_quadtree_25
field: crime nc_dim_cat_1
valname: crime 7 CRIM_SEXUAL_ASSAULT
valname: crime 13 KIDNAPPING
...

6 [LKS13] Lins, Klosowski, and Scheidegger (2013): p. 6, sect. 4.3.3 Temporal Queries
7cf. fn. footnote 6
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valname: crime 11 INTERFERENCE_WITH_PUBLIC_OFFICER
valname: crime 17 NON-CRIMINAL
metadata: tbin 2013-12-01_00:00:00_3600s
field: time nc_dim_time_2
field: count nc_var_uint_4

AB 3B 83 00 98 B4 41 01 10 8A 00 01 00 00 00 A4 49 83 00 ... (binary data)

The first part of the file is separated from the second part by a blank line. It is a textual de-
scription of the data set including its name, record encoding type, nanocube field descriptions,
value names of the categories with a numeric mapping, and metadata e.g. the point in time to
which the encoded time differences of the data points refer to. In this example, the nanocube
has four fields: “location nc_dim_quadtree_25” a quadtree with twenty-five levels for the
spatial dimension, “crime nc_dim_cat_1” a categorical dimension with up to 256 categories
(one byte), “time nc_dim_time_2” a temporal dimension with two bytes to represent the time
difference between the timestamp from the metadata and the records, “count nc_var_uint_4”
four bytes to count the number of points of the same kind by this measure (position, category,
time).

The second part of the file holds the binary encoded records and has the following structure:
Firstly, the position in a square grid with 2n x2n cells8 stored in four bytes for each of the two
coordinates. As mentioned above, one byte is used to determine the category to which a
record belongs, followed by two bytes for the time dimension and four bytes that hold the
number of points, that meet the same criteria. All cohesive bytes are stored in the little-endian
format. In this example every data packet has a length of fifteen bytes and can be illustrated
like this: | x | y |c|t | n |.

A Python script called nanocube-binning-csv converts comma separated files (CSV) to DMP.
Instructions can be found on the official Nanocube GitHub webpage9. Note that the CSV
file needs to be in chronological order, if the file is read into multiple chunks (default chunk
size is 50000 rows but can be adjusted). Otherwise, the resulting DMP file will be rejected
while building up the nanocube structure, because the current implementation of the time
series does only support in-order insertion.

A DMP file can be read by the nanocube server program. There are two options, either
storing the resulting nanocube structure for later use or starting up a query server directly.
For example, if nanocube is the name of the nanocube server program and data.dmp is the
dataset of interest, the command lines would look like this:
nanocube -d data.dmp -o data.nc
nanocube -l data.nc -q 29512
nanocube -d data.dmp -q 29512
The argument -o (output) defines where to store the nanocube, which then can be loaded

by using the -l (load) option. The parameter -q defines the query port of the server. New data
points can be ingested into a loaded nanocube by streaming in a DMP file via standard input
(stdin).

8This describes the position on a world map, see quadtree idea in chapter 4 Nanocubes
9https://github.com/laurolins/nanocube
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nanocube -l data.nc -o data.nc < newData.dmp
nanocube -l data.nc -q 29512 < newData.dmp
Keep in mind that newData.dmp must only contain time-wise newer data points than the

ones already contained in the nanocube (data.nc), otherwise insertion will fail. Moreover, the
current implementation does not support quadtree partitioning10 when reading from stdin,
because this kind of stream does not support seeking to a defined position, which is necessary
to read in a random set of data points without reading in the whole DMP file upfront.

10see section 5.1 Quadtree Partition
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5 Multi-part Nanocubes

The build time of a nanocube prolongs with every additional dimension. The time needed to
build a nanocube is proportional to its size. The size grows exponentially with the number
of dimensions, because it is proportional to the number of “product bins” a dataset hits. The
product bins can be seen as the Cartesian product of the dimension sets. “For example if a
“device” dimension has a “bin" called “iPhone”, and a dimension “language” has a “bin" called
“english”, then a record with “iPhone” and “english” values will hit the product bin “(iPhone,
english)”. This product bin will need to be represented in the data structure to account for
such record.”1 Adding another categorical dimension does multiply the number of product
bins by the cardinality of the additional category set.

YP was interested in building a nanocube with twelve categorical dimensions. Inserting
two hundred million data points would have taken approximately two weeks on a modern
high end server processor (CPU) with sixteen cores. With respect to the time required to
build the nanocube, it was perturbing to see that just one single CPU core was in use. The
desire arose to make use of the entire available computing power and thereby diminish the
build time to under two days. To satisfy this desire, a nanocube would need to be split up
into parts, which then can be built (preferably) independently in parallel. To get the exact
same query results that a single parted nanocube would return, the parts themselves or their
query results must be merged. Merging two nanocubes resp. parts implies traversing at least
one structure entirely, which would be an expensive operation on big datasets. Pseudo code
based on the original nanocube pseudo code2 was developed to examine this approach. See
section 9.1 Pseudocode: Merging two Nanocubes in the appendix. Merging the query results
turned out to be easier to implement and the introduced overhead in query processing time is
negligible as shown in section 5.3 Benchmarks.

5.1 Quadtree Partition

In order to implement a multi-parted version of nanocubes, a sensible way to cut the structure
into parts needed to be found. As mentioned in chapter 4 Nanocubes, the nanocube structure
relies on quadtrees to efficiently represent the spatial dimension. Without partitioning the
quadtree structure, the size of a multi-parted nanocube would grow substantially with every
additional part3, because implementing the sharing of nodes between parts would be to
effortful. The opposite effect can be achieved by defining spatial partitions. It is more likely

1Lauro Lins: https://github.com/laurolins/nanocube/issues/30#issuecomment-106112543
2[LKS13] Lins, Klosowski, and Scheidegger (2013): fig. 3, p. 3
3compare memory usage in section 5.3 Benchmarks
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that nodes can be shared within a spatial focused dataset, which implies that fewer time series
need to be stored. Figure 5.1 illustrates this effect.

Figure 5.1: Multi-part nanocubes can be more space efficient, when spatial partitions are
defined. Sharing is more likely to occur in a spatial focused portion of a dataset.

Since every dataset can have different spatial emphases, the split points of the quadtree need
to be computed individually to evenly balance the data points and therefore the computational
work over all parts/threads/cores. Precomputing the whole quadtree would be a tedious
process. Instead x (default is 10000) random samples of the dataset are inserted into a count
quadtree, whose nodes count the number of points passing through them during insertion.
After insertion, the split points can be determined by adding up the counts of the leaf nodes
from left to right until the limit of points for each group/thread/part is reached. For instance,
if eight parts are going to be created and 10000 randomly selected samples are inserted, each
part should cover about 1250 samples. The more samples taken, the more consummate the
split points will be to the actual dataset.

Figuring out the most sensible borders between the groups can be a tricky business. The
first case is easy: If adding the count of the leaf node in question does not exceed the threshold
of the current group, take it in. If the threshold would be exceeded but the group is empty,
take it in regardless. If the group already holds nodes, minimize the overlap by comparing
the distances to the threshold with and without the new count added. A smaller distance
determines if the count is taken in or added to the subsequent group.

14



Figure 5.2: Count quadtree: To find three balanced partitions, add the counts from the leaf
nodes from left to right while trying to get as close as possible to 111 counts per
partition. The two most sensible split points in this example are the nodes reached
by taking the quad tree paths 0,2 and 2,2.

Figure 5.3: Count quadtree (fig. 5.2) partitioned into three parts.
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This is the algorithm implemented in C++11. The function gets called with every leaf
node (Key) of the count quadtree from left to right. The split points are stored in a vector4 of
quadtree addresses. The whole quadtree partitioning project is hosted as a separate project on
GitHub5.

Listing 5.1: A part of the quadtree partitioning C++11 implementation. The function calcu-
lates the most sensible borders for a given number of partitions.

1 template <typename Key>
2 void P a r t i t i o n F u n c t i o n<Key> : : push ( const Key& key , Count count ) {
3
4 i f ( s p l i t _ p o i n t s . s i z e ( ) == ( s t d : : s i z e _ t ) num_parts −1)
5 return ;
6
7 auto t h r e s h o l d = t o t a l _ c o u n t / num_parts ;
8 i f ( group . count + count < t h r e s h o l d ) {
9 group . l a s t _ k e y = key ;

10 ++group . num_keys ;
11 group . count += count ;
12 }
13 e l s e {
14 i f ( group . num_keys == 0 ) {
15 s p l i t _ p o i n t s . push_back ( key ) ;
16 }
17 e l s e {
18 auto d i f f _ w i t h o u t = t h r e s h o l d − group . count ;
19 auto d i f f _ w i t h = group . count + count − t h r e s h o l d ;
20 i f ( d i f f _ w i t h o u t < d i f f _ w i t h ) {
21 group . count = count ;
22 group . l a s t _ k e y = key ;
23 group . num_keys = 1 ;
24 }
25 e l s e {
26 s p l i t _ p o i n t s . push_back ( key ) ;
27 group . count = 0 ;
28 group . l a s t _ k e y = key ;
29 group . num_keys = 0 ;
30 }
31 }
32 }
33 }

4A vector in C++ is similar to an array in other programming languages. It is a sequence of objects of the
same type.

5https://github.com/Pyroluk/quadtree_partition
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5.2 C++11 Implementation

Besides this document and a few comments in the program code, both C++11 implemen-
tations of Nanocubes are not documented. The Unified Modeling Language (UML) class
diagram in the appendix6 helps to understand the program and which modifications where
made to implement multi-parted nanocubes.

Like every C++ program, the function called main is executed first. The two execution
paths inside this function are either loading a nanocube from file(s) or building a new one
based on a DMP7 file. Both paths end up calling a run function, which is declared and
implemented inside the main function. run creates a Kernel object, whose main purpose is
to store references to the actual nanocube object instance(s), the corresponding nanocube
schema8 and the options entered by the user in the command line. Depending on the options,
a built or loaded nanocube is then saved to disc or a server is started to serve queries on the
nanocube. In both cases an object called NanocubeIngest is used to build a new nanocube or
add new data points to a loaded nanocube. The method run_async from NanocubeIngest starts
and returns a C++11 thread instance, which executes the method run from NanocubeIngest.
It reads in a DMP stream point by point either from standard input (stdin) or a file, parses the
binary data into an address object (quadtree path) and the variables, which are associated to
the point, into a vector object. The address and variables are then passed to the insert method
of the Nanocube object(s).

NanocubeIngest, Kernel, Options and the main function are the first program parts that
palpably come to mind as a starting point to upgrade the code to concurrently handle multiple
nanocube object instances.

5.2.1 Multi-part command line options

The command line options are extended with two new parameters: nanocube_parts: -p and
training_size: -x. The first option can be used to define how many9 parts the nanocube
should have and if the quadtree partition algorithm should be used. The second option can
be used to define how many10 random data point samples should be read in to build up the
count quadtree described in section 5.1 Quadtree Partition.
nanocube -d data.dmp -o data.nc -p 2
nanocube -d data.dmp -o data.nc -p auto
nanocube -d data.dmp -o data.nc -p auto8
nanocube -d data.dmp -o data.nc -p auto8 -x 100000
nanocube -d data.dmp -o data.nc -p qtpart(20133212103132,21023233231112)
The first command line builds a nanocube with two parts. The data points are assigned to

the parts alternating one after the other in the order they are stored in the DMP file, without
partitioning the quadtree in an elaborated way. The second command line builds a nanocube

6section 9.2 UML class diagram
7see section 4.1 Building a Nanocube from raw data
8see the first part of a DMP file in section 4.1 Building a Nanocube from raw data
9default is 1

10default is 10000
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with as many parts as the CPU has cores and enables quadtree partitioning, too. The third line
is similar but concretely sets the number of parts to eight. In addition, the fourth command
sets the number of training points to 100000. The last line creates a nanocube with three
parts by stipulating two quadtree split points. The stated quadtree addresses are represented
as a sequence of child node labels and must have the same length as the nanocube quadtree
has levels. The main purpose of this option is the ability to add new data points via stdin to
a loaded, quadtree partitioned nanocube. Automatically calculated split points are written
to the console via standard out (stdout) and should be noted if new points are going to be
added later on. Note that every part is saved into its own separate file. The last command line
would result in the creation of three nanocube files: data.0.nc, data.1.nc and data.2.nc. Read
chapter 6 Save and Load for an explanation of this design decisions. Starting a server instead
of storing the structure to disc works alike. Just exchange -o data.nc with e.g. -q 29512 to
define a server port.

5.2.2 Multithreading

The main function is adjusted to create a vector of Nanocube objects with as many instances as
defined by the newly introduced -p parameter. The function arguments and interfaces used
in the call hierarchy described above are adapted accordingly. Other minor parts needed to
be adjusted too, but they are not in the direct scope of implementing multi-part nanocubes.

NanocubeIngest’s range of functions is extended with new tasks. Instead of just inserting
point after point into a single nanocube object instance, the run method now coordinates the
distribution of points to multiple threads, which are then inserting the assigned points into
their nanocube part.

If quadtree partitioning is activated, the new method getPartitionFunction creates and
returns a PartitionFunction object with either newly calculated or user-defined split points.
The partition function is then used to determine the part of the nanocube to which a given
data point belongs. As described in section 5.1 Quadtree Partition, x random data points
must be read to calculate sensible borders between the nanocube parts. Since the size of a
single record inside a DMP file is known, the exact position of every record inside a DMP file
stream can be calculated easily: starting position of binary data + record number * record
size. Given the positions in the stream, a large quantity of random samples can be read in
expeditiously by using the seek functionality of file streams11.

Each thread has a queue of data points to process. The queues get filled by the thread
that executes the run method of NanocubeIngest. Reading all points into the queues at once
would take up a considerably amount of memory when working with big datasets. Instead,
every queue gets filled up every thirty seconds to a dynamically calculated threshold of
initially 100000 points. This is done to maximize the insertion speed by minimizing context
switches and expensive mutex locks. After calculating the first measurement of how many
points per second are processed, the threshold automatically adjusts to the number of point
what will approximately be processed until the next refill, plus a buffer of 25%. Because the
complexity of inserting a point into a nanocube rises with its size, the number of points

11Standard input streams (stdin) do not support seeking, thus quadtree partitioning does not support stdin.
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inserted per second shrinks accordingly over time. Therefore, the queues should never empty
out before the next refill. Nevertheless, external influences e.g. other programs could cause
an unexpected speedup by releasing computational power, which even exceeds the buffer and
thus leads to empty queues and a temporary stopped insertion process. This uncommon case
is resolved by falling back to the initial threshold if zero points per second are inserted.

The C++11 Standard Library does not provide a ready to use thread-safe queue. Fortu-
nately, Juan from Juan’s C++ Blog published a post12 in which he describes how to add
thread-safety to a normal C++11 queue by using a mutex and a condition variable. In a
nutshell, “The mutex prevents concurrent reads and writes, and the condition variable allows
consuming threads to wait for elements to be available in the queue without excessive mutex
contention and without using expensive and inefficient polling.”13. To keep track of the
insertion progress, two variables are added to the provided wrapper class to count the pops
and pushes, which the method getObjectCount uses to calculate the remaining points in the
queue. Moreover, the class is extended with a hasElement method. It is a thread-safe wrapper
for the empty method of the underlying C++11 queue object.

The constructor of NanocubeIngest now creates, initiates and stores a thread and a queue
for every nanocube part.

Listing 5.2: NanocubeIngest constructor creates threads and queries for parallel data insertion
1 NanocubeInges t : : NanocubeInges t ( Kerne l& kerne l ,
2 s t d : : i s t r e a m &i n p u t _ s t r e a m ) :
3 k e r n e l ( k e r n e l ) , i n p u t _ s t r e a m ( i n p u t _ s t r e a m ) {
4 for ( auto i = 0 ; i < k e r n e l . nanocubes . s i z e ( ) ; ++i ) {
5 queues . emplace_back ( new ThreadsafeQueue<A d d r e s s V a r i a b l e s > ( ) ) ;
6 t h r e a d s . push_back ( s t d : : t h r e a d (& NanocubeInges t : : t h r e a d I n s e r t ,
7 th i s , i ) ) ;
8 }
9 }

Note that ThreadsafeQueue has a C++11 mutex member variable, that cannot be copied
or moved, thus making the whole class not copy- nor movable. Because of that, creating
a vector of type ThreadsafeQueue is tricky. Vector elements must be at least movable by
definition. This is achieved by creating a vector of type unique pointers (unique_ptr) of type
ThreadsafeQueues, which are movable:

Listing 5.3: Defining a set of ThreadsafeQueues
1 vec tor<s t d : : un ique_ptr<ThreadsafeQueue<A d d r e s s V a r i a b l e s>>> queues ;

Usually push_back is used to insert elements into a vector, but the method creates and inserts
a copy of the passed variable and thus cannot be used. emplace_back does the trick by
constructing the object instance directly into the vector without a copy or move operation.
AddressVariables is a structure holding the quadtree address and the associated variables of a
data point.

12 https://juanchopanzacpp.wordpress.com/2013/02/26/concurrent-queue-c11/
13cf. fn. footnote 12
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The threads created and started in the constructor execute the threadInsert method of
NanocubeIngest concurrently. Each thread pops and inserts the data points from its queue
until it is empty and the thread, that pushes the data into the queues, sets the member
variable done_inserting_queues to true. Otherwise, the threads will check every one hundred
milliseconds for new data in the queue. The pushing thread will wait until every data point is
inserted by joining every thread listed in the vector of threads.

Listing 5.4: Every insertion thread executes threadInsert concurrently. They pop data points
off their queue and insert them into their nanocube part

1 void NanocubeInges t : : t h r e a d I n s e r t ( i n t threadNumber ) {
2 while ( ! d o n e _ i n s e r t i n g _ q u e u e s ||
3 queues [ threadNumber]−>hasElement ( ) ) {
4 while ( queues [ threadNumber]−>hasElement ( ) ) {
5 A d d r e s s V a r i a b l e s tmp = queues [ threadNumber]−>pop ( ) ;
6 k e r n e l . nanocubes [ threadNumber]−> i n s e r t ( tmp . a d d r e s s ,
7 tmp . v a r i a b l e s ) ;
8 }
9 s t d : : t h i s _ t h r e a d : : s l e e p _ f o r ( s t d : : chrono : : m i l l i s e c o n d s ( 1 0 0 ) ) ;

10 }
11 }

Besides the threads that insert data points, the vector of threads contains a thread that
prints out the current build progress on a terminal by executing the new method reportStatus.
It prints a progress bar, memory usage in megabytes, time past in seconds, points inserted,
points per second, and an estimation of the remaining time in seconds. The estimation does
not take into account the deceleration of insertion that occurs with the growth of the data
structure. It is simply calculated by dividing the number of remaining points by how many
points per second are currently inserted. If the flag -z is used in the command line, additional
progress bars are shown to indicate the filling level of the queues. The report frequency can
be adjusted by the second with the -f command line parameter.

58% [============================ ]
(stdin ) mem. res: 29MB. time(s): 5
(stdin ) points inserted: 5898/10000
(stdin ) points per second: 1179
(stdin ) est. remaining time(s): 3

Figure 5.4: Nanocube build progress report

A major difference between the new and the old, but still official, code is custom memory
allocation tailored for nanocubes. The two pure static classes PoolAllocatorWrapper and
SimpleAllocatorWrapper held an instance of PoolAllocator resp. SimpleAllocator. Every part
of the program, that allocates and frees memory within the nanocube structure, called
the method malloc and free of one of the two wrapper classes. The wrappers then just
passed the call to the encapsulated allocator instance. The two wrappers got replaced with
SlabAllocatorWrapper, due to the new allocator implementation described in chapter 6 Save
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and Load. Unfortunately, all allocator implementations including the new one are not
thread-safe. Serializing the memory allocation with normal C++11 mutexes does retard the
build process immensely because allocation and deallocation of memory is a very frequent
operation during the build process and locking a mutex is time-consuming. The performance
impact can be significantly reduced by using a spinlock 14, but the difference without using
locks at all is still substantial. For that reason, every nanocube part has its own allocator
instance. The static allocation wrapper(s) are deeply intertwined in the code. Amongst other
things, they are passed as template arguments in several classes of the program. Changing
this design decision would be a project on its own, especially without code documentation.
Therefore, the wrapper(s) now holds a vector of allocators, one for each nanocube part. In
order to use the correct allocator instance, every class instance using the wrapper(s) needs
to know to which part of the nanocube it belongs. The part number is assigned first in the
create method of the Nanocube class, which passes the number to the constructor of the class.
The number gets propagated through the whole structure by the methods allocateRootNode,
allocateInternalNode and allocateSummaryNode, which pass the number to the corresponding
constructor of the node class in question. The downside of this design is the additional
memory space needed to store the numbers15.

5.2.3 Merging query results

The merging of the queue results of each nanocube part is implemented in the serveQuery
method of the NanocubeServer class. The method gets called from a handler of the nanocube
server with the name “count”, which gets initialized in the method initializeQueryServer of
the same class. A Request and a Program object are passed into the method. The Request object
holds a pointer to a mg_connection instance from the popular Mongoose Embedded Web
Server Library16 and is at the end of the procedure used to send back the response in text, json
or binary format. A request string e.g. count.r("timestamp",interval(648,649)).a("location",
dive(tile2d(154,320,9),7),"img") gets parsed by a Parser instance inside the handler into a
Program object, which is a singly linked list of Call objects. Inside the serveQuery method, the
request in form of a Program object gets parsed once again. This time into a Query object with
the method parse_program_into_query from the NanocubeServer class. Each Nanocube object
instance creates its own Query instance by calling the query method of the Nanocube class. The
query get executed by calling the execute method of the Query class. The resulting TreeStore
object is generated by a TSeriesCollector object instance, which gets passed in the execute
call. Since the Query objects are depending on the Nanocube object instance from which
they got created from, every nanocube part’s Query object must be filled separately with the
14 “In software engineering, a spinlock is a lock which causes a thread trying to acquire it to simply wait in

a loop ("spin") while repeatedly checking if the lock is available. Since the thread remains active but is
not performing a useful task, the use of such a lock is a kind of busy waiting. Once acquired, spinlocks
will usually be held until they are explicitly released, although in some implementations they may be
automatically released if the thread being waited on (that which holds the lock) blocks, or "goes to sleep".
Because they avoid overhead from operating system process rescheduling or context switching, spinlocks are
efficient if threads are likely to be blocked for only short periods.” - https://en.wikipedia.org/wiki/Spinlock

15A few megabytes depending on the number of nodes.
16https://github.com/cesanta/mongoose
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“Program”. Generating and executing the queries for every nanocube part is implemented
by encapsulating the described calls into Future objects, which get created by the C++11
template function async. The launch behavior of the futures can be adjusted with a flag in
the async call. For now the execution of the futures and therefore of the queries is done
sequentially, because a dependency on another project called Polycover is not thread-safe yet.
If this problem is fixed, parallel execution of the queries can be enabled by simply replacing
std::launch::deferred with std::launch::async in the async call. The Futures are stored in a vector
of Futures and their results are pushed into a vector of TreeStores. The TreeStores are then
merged together into a single TreeStore to generate the final query result. For every query
type, the tree stored inside a TreeStore has always a depth of one. The child nodes of the root
are implemented as an unordered_map, which makes merging the trees a straight forward
process. The first not empty tree in the vector is the starting point of the merge process. All
other trees are merged into it by either adding up the values of equivalent child nodes or
by copying over missing child nodes into the merged tree. If the trees only consist of the
root nodes, their values are summed up in the root of the merged tree. The unordered_map
should not be manipulated directly, because of a reasoned and coherent memory allocation
scheme behind the TreeStore structure. For instance, the method getOrCreateChild from
the InternalNode class must be used to create new child nodes. Moving17 entries between the
maps, results in a very hard to find memory error, because the destructor of the InternalNode
class will try to delete the already moved objects.

Listing 5.5: Executing queries and merging their results
1 s t d : : v ec tor<s t d : : f u t u r e<t r e e _ s t o r e : : TreeS tore<c o n f i g _ t y p e>>>
2 t r e e S t o r e F u t u r e s ;
3 for ( i n t i = 0 ; i < num_nanocubes ; ++i ) {
4 t r e e S t o r e F u t u r e s . push_back ( s t d : : a sync ( s t d : : l aunch : : d e f e r r e d ,
5 [&] ( i n t i ) {
6 auto query = k e r n e l . nanocubes [ i ]−>query ( ) ;
7 pa r s e_program_in to_query ( program , query ) ;
8
9 i f ( queryMode == query_type : : UNDEFINED)

10 queryMode = query . mode ;
11
12 T S e r i e s C o l l e c t o r c o l l e c t o r ;
13 query . e x e c u t e ( c o l l e c t o r ) ;
14
15 const t r e e _ s t o r e : : TreeS tore<c o n f i g _ t y p e> &r e s u l t =
16 ∗ c o l l e c t o r . t r e e . g e t ( ) ;
17
18 return r e s u l t ;
19 } , i ) ) ;
20 }
21
22 . . .

17C++11 supports move semantics, which can be used to avoid unnecessary copy operations of objects.
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23
24 s t d : : v ec tor<t r e e _ s t o r e : : TreeS tore<c o n f i g _ t y p e>> t r e e S t o r e s ;
25 for ( auto& t r e e S t o r e : t r e e S t o r e F u t u r e s )
26 t r e e S t o r e s . push_back ( t r e e S t o r e . g e t ( ) ) ;
27
28 t r e e _ s t o r e : : TreeS tore<c o n f i g _ t y p e> mergedTree ;
29 i n t i = 0 ;
30 do {
31 mergedTree = t r e e S t o r e s [ i ] ;
32 } while ( mergedTree . root . g e t ( ) == n u l l p t r &&
33 ++i < t r e e S t o r e s . s i z e ( ) ) ;
34
35 i f ( mergedTree . root . g e t ( ) != n u l l p t r ) {
36 i f ( mergedTree . root−>i s I n t e r n a l N o d e ( ) ) {
37 auto& mergedChi lds =
38 mergedTree . root−>a s I n t e r n a l N o d e ()−> c h i l d r e n ;
39
40 bool i s F i r s t T r e e S t o r e = true ;
41 for ( auto& t r e e S t o r e : t r e e S t o r e s ) {
42 i f ( t r e e S t o r e . root . g e t ( ) == n u l l p t r )
43 continue ;
44 i f ( i s F i r s t T r e e S t o r e ) {
45 i s F i r s t T r e e S t o r e = f a l s e ;
46 continue ;
47 }
48
49 auto& c h i l d s =
50 t r e e S t o r e . root−>a s I n t e r n a l N o d e ()−> c h i l d r e n ;
51 for ( auto& c h i l d : c h i l d s ) {
52 bool isNew = f a l s e ;
53 auto foundOrNewChild = mergedTree . root−>
54 a s I n t e r n a l N o d e ()−>
55 ge tOrCrea teChi ld ( c h i l d . f i r s t , true , isNew ) ;
56
57 i f ( isNew )
58 foundOrNewChild−>asLeafNode ()−> v a l u e =
59 c h i l d . second . node−>asLeafNode ()−> v a l u e ;
60 e l s e
61 foundOrNewChild−>asLeafNode ()−> v a l u e +=
62 c h i l d . second . node−>asLeafNode ()−> v a l u e ;
63 }
64 }
65 }
66 e l s e // r o o t i s l e a f n o d e
67 {
68 bool i s F i r s t T r e e S t o r e = true ;
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69 for ( auto& t r e e S t o r e : t r e e S t o r e s ) {
70 i f ( t r e e S t o r e . root . g e t ( ) == n u l l p t r )
71 continue ;
72 i f ( i s F i r s t T r e e S t o r e ) {
73 i s F i r s t T r e e S t o r e = f a l s e ;
74 continue ;
75 }
76
77 mergedTree . root−>asLeafNode ()−> v a l u e +=
78 t r e e S t o r e . root−>asLeafNode ()−> v a l u e ;
79 }
80 }
81 }

5.3 Benchmarks

In order to test the performance and integrity of the implementation of Multi-part Nanocubes,
nanocubesBenchmark18 was written. It is a C++11 program, which measures the time
needed to build and query nanocubes. It optionally validates the query results, too. The
number of parts is increased with each iteration starting from one up to the number defined
with the -p parameter. The auto and qtpart19 keywords are supported, too. If the nanocube
executable is in another folder then the benchmark executable, the file path must be specified
with the -n parameter. The -e flag can be used to set the process priority to high on windows
or respectively the nice value to -15 on linux and mac systems. This reduces the influence of
other processes on the benchmark results. All other nanocube parameters are supported too
and are forwarded to the nanocube program.

The code should compile and run on every platform that supports a C++11 compiler and
the Boost C++ libraries20. Boost.Asio is used to query the nanocubes over HTTP in JSON
mode.

The C++11 Standard Library does not support the creation of processes. Fortunately, Ole
Christian Eidheim published “A small platform independent library making it simple to create
and stop new processes in C++, as well as writing to stdin and reading from stdout and stderr
of a new process”21. The end of the insertion process is detected by comparing the strings
from the standard output of the nanocube program with the unique string “(stdin:done)”. To
prevent a truncation of this important string, the nanocube program is modified to flush the
standard out buffer accordingly.

The validation of query results can be enabled by specifying a file path with the -u command
line parameter to a file containing nanocube queries. This file can either be a plain textfile
with one query per line or a json file generated by the NetExport22 extension for the popular

18https://github.com/Pyroluk/nanocubesBenchmark
19see section 5.2 C++11 Implementation
20http://www.boost.org/
21https://github.com/eidheim/tiny-process-library
22http://www.softwareishard.com/blog/netexport/
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Mozilla Firefox Add-on Firebug23. With the help of the extension, Firebug can be used to
capture every nanocube query sent by the web client. To gather large quantities of queries, the
net.logLimit setting of Firebug should be set so zero (disable limit) or an appropriate number
of entries (default is 500). The HTTP tracing file contains both queries and results, but the
validation is currently based on the results of the first iteration of the benchmark process with
only one nanocube part. This behaviour can be changed by uncommenting the code in line
324 of the nanocubesBenchmark.cc source file. This enables validation based on the results
stored in the tracing file. The order of child nodes in a responded “tree structure” can be
different with every request, because there is no defined execution order of nanocube parts in
the merge process. Therefore, to validate a response, the children are read into unorderd_maps
to check for mutations like different values and missing or unexpected nodes.

5.3.1 Procedure

The program first reads in the file containing the queries, then parses the command line
parameters and determines the filename of the new logfile (testlog0.txt, testlog1.txt, . . . ,
testlogX.txt). Depending on how many parts are going to be tested maximally, in a loop
from 1 to x parts, a command line with the current nanocube parameters gets generated,
printed out and passed to a newly started nanocube process. If requested, the process priority
is adjusted to privilege the nanocube program. A stopwatch is started directly before starting
the nanocube process. The standard output from the nanocube process is read and checked
for (stdin:done) to determine the end of the insertion process, after which the stopwatch is
stopped too. The last status the nanocube process printed is written to the terminal and into
the logfile, together with the measured time needed for the insertion procedure.

A second stopwatch is started to measure the query test procedure. For each query, a
HTTP request string is generated and sent to the nanocube process via a TCP connection.
The complete response is read after parsing the content length, if the correct HTTP status
code (200, OK) is returned. If enabled, the responded query result is checked for validity
against the result responded in the first benchmark iteration with only one nanocube part as
described above. The JSON string gets parsed with the help of the library JsonCpp24. The
number of successful queries is counted and printed out together with the time needed to
complete all queries.

Lastly, the nanocube process gets killed programmatically. After waiting two seconds, the
next benchmark iteration starts or the benchmark process ends, if no further iterations are
left.

5.3.2 Results

The performance was tested on several CPUs ranging from a high end Intel Core i7 CPU
with Hyper-Threading, over an AMD Accelerated Processing Unit (APU) down to systems
on a chip (SoC) found on single-board computers like the Raspberry Pi and Banana Pi resp.

23http://getfirebug.com/
24https://github.com/open-source-parsers/jsoncpp
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all sorts of mobile devices like smartphones and tablets. All processing units are running a
64-bit version of Windows, except the SoCs, which run 32-bit versions of Raspbian25.

Test subjects ordered by computing power, fastest first:

• Intel Core i7-4710HQ, 4x 2.5 GHz, 3.5 GHz Turbo, 8 Threads, 64-bit, Windows 8.1

• AMD Phenom II X4 955 Black Edition, 4x 3.4 GHz, 4 Threads, 64-bit, Windows 10

• AMD Phenom X4 9550, 4x 2.2 GHz, 4 Threads, 64-bit, Windows 7

• AMD Athlon 5350 APU, 4x 2.05 GHz, 4 Threads, 64-bit, Windows 7

• Intel Pentium Dualcore E2140, 2x 3 GHz, 2 Threads, 64-bit, Windows 7

• Allwinner A20 SoC ARMv7-A, Banana Pro, 2x 1 GHz, 2 Threads, 32-bit, Raspbian
Jessie

• Broadcom BCM2835 SoC ARMv6, Raspberry Pi B rev. 2, 1x 950 MHz, 1 Thread,
32-bit, Raspbian Jessie

Each processor ran four benchmarks in total26, comparing the performance with and
without quadtree partitioning27 as well as with TCMalloc28 and without. The maximum
number of parts was set to modestly oversubscribe the CPU with one or two more threads
than physically present. When using quadtree partitioning, oversubscription often boosted
the insertion speed even further, because spatial focused datasets are faster to process into the
nanocube data structure.

The measurement series are based on a real world dataset with eleven categorical dimensions
generated by YP from data gathered from RTB systems29. The quadtree(s) have the common
depth of twenty-five levels. Only the first 100000 data points of the 6.9 million spanning
dataset were inserted to keep the build times in reasonable boundaries while benchmarking.
To determine the query speed, the time needed to process 3057 queries was measured. The
queries originate from browsing through the dataset with the web client, while using the
whole range of functions in a realistic fashion. Note that the measured query times include
JSON conversions of the query results.

Splitting up a problem into parts in such a way that they can be solved independently (on
separate processor cores) naturally results in a linear speedup, often minus a small overhead.
This effect can be observed when quadtree partitioning is not used. The speedup is limited to
the number of physical CPU cores. Oversubscription only results in more memory usage,
slower query times and often even slower insertion speeds. In contrast, when using quadtree
partition, oversubscription lowers the memory usage and speeds up the insertion even further

25Raspbian is based on Debian GNU/Linux
26The Raspberry Pi was only subject in the second benchmark run with TCMalloc due to the incredibly slow

performance
27see section 5.1 Quadtree Partition
28read section 5.3.3 Profiling: Even more Speed with TCMalloc for details
29read section 3.1 Motivation
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with every additional thread/part. Surprisingly, not even the query speed is influenced
noticeably. Only when using over thirty threads to calculate the nanocube, the query speed
slows down by 10 %30. Partitioning the quadtree results in a more than linear speedup on every
tested CPU. To a certain degree, it even makes sense to highly oversubscribe the CPU cores.
As fig. 5.6 Intel Core i7-4710HQ: up to 100 Threads, Insertion Speed shows, the insertion
speed keeps rising, but the memory consumption starts to climb again, if (too) many threads
are used31.The query speed is another factor to consider, because it nearly linearly decreases
with every additional thread32. Table 5.27 TCMalloc Intel Core i7-4710HQ with Quadtree
Partition: up to 100 Threads holds the whole measurement series of the oversubscription test.

The “linear” and “TCMalloc linear” lines in the following graphs illustrate the theoretical
linear growth in insertion speed. They are both based on the speed measured in the first
benchmark iteration with only one thread/part. The insertion speed is measured in points
per second similar to the query speed, which is measured in queries per second.
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Figure 5.5: Intel Core i7-4710HQ

30see fig. 5.8 Intel Core i7-4710HQ: up to 100 Threads, Query Speed and table 5.27 TCMalloc Intel Core
i7-4710HQ with Quadtree Partition: up to 100 Threads

31see fig. 5.7 Intel Core i7-4710HQ: up to 100 Threads, Memory Consumption
32see fig. 5.8 Intel Core i7-4710HQ: up to 100 Threads, Query Speed
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Figure 5.6: Intel Core i7-4710HQ: up to 100 Threads, Insertion Speed
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28



y = -2.6476x + 939.94
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Figure 5.8: Intel Core i7-4710HQ: up to 100 Threads, Query Speed

0.00

100.00

200.00

300.00

400.00

500.00

1 2 3 4 5 6

Po
in
ts
p
er

Se
co
n
d

Threads / Parts

par��oned TCMalloc par��oned

not par��oned TCMalloc not par��oned

linear TCMalloc linear

Figure 5.9: AMD Phenom II X4 955 Black Edition
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Figure 5.10: AMD Phenom X4 9550
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Figure 5.11: AMD Athlon 5350 APU
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Figure 5.12: Intel Pentium Dualcore E2140
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The “relative difference columns” in the tables relate to the column in front of it. All
percentages relate to the measurement from a single parted nanocube (first row). For example,
in table 5.1 Intel Core i7-4710HQ with Quadtree Partition the insertion speed is about 700 %
faster when using ten threads/parts instead of just one. T. stands for number of threads/parts.

Table 5.1: Intel Core i7-4710HQ with Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 102.99 p/s 971 s - 312 MB - 3711 s 823.77 q/s -
2 219.30 p/s 456 s 212.94 % 282 MB 90 % 3582 s 853.43 q/s 104 %
3 347.22 p/s 288 s 337.15 % 265 MB 85 % 3635 s 840.99 q/s 102 %
4 460.83 p/s 217 s 447.47 % 270 MB 87 % 3665 s 834.11 q/s 101 %
5 526.32 p/s 190 s 511.05 % 249 MB 80 % 3651 s 837.30 q/s 102 %
6 555.56 p/s 180 s 539.44 % 251 MB 80 % 3696 s 827.11 q/s 100 %
7 653.59 p/s 153 s 634.64 % 241 MB 77 % 3717 s 822.44 q/s 100 %
8 684.93 p/s 146 s 665.07 % 246 MB 79 % 3741 s 817.16 q/s 99 %
9 694.44 p/s 144 s 674.31 % 233 MB 75 % 3699 s 826.44 q/s 100 %
10 729.93 p/s 137 s 708.76 % 235 MB 75 % 3748 s 815.64 q/s 99 %

Table 5.2: Intel Core i7-4710HQ without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 93.98 p/s 1064 s - 308 MB - 3623 s 843.78 q/s -
2 194.17 p/s 515 s 206.60 % 602 MB 195 % 3852 s 793.61 q/s 94 %
3 274.73 p/s 364 s 292.31 % 732 MB 238 % 4082 s 748.90 q/s 89 %
4 361.01 p/s 277 s 384.12 % 868 MB 282 % 4339 s 704.54 q/s 83 %
5 353.36 p/s 283 s 375.97 % 992 MB 322 % 4541 s 673.20 q/s 80 %
6 367.65 p/s 272 s 391.18 % 1187 MB 385 % 4768 s 641.15 q/s 76 %
7 370.37 p/s 270 s 394.07 % 1382 MB 449 % 4984 s 613.36 q/s 73 %
8 383.14 p/s 261 s 407.66 % 1466 MB 476 % 5130 s 595.91 q/s 71 %
9 387.60 p/s 258 s 412.40 % 1449 MB 470 % 5351 s 571.30 q/s 68 %
10 386.10 p/s 259 s 410.81 % 1585 MB 515 % 5439 s 562.05 q/s 67 %
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Table 5.3: AMD Phenom II X4 955 Black Edition with Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 62.70 p/s 1595 s - 316 MB - 5327 s 573.87 q/s -
2 134.59 p/s 743 s 214.67 % 284 MB 90 % 5271 s 579.97 q/s 101 %
3 233.10 p/s 429 s 371.79 % 270 MB 85 % 5094 s 600.12 q/s 105 %
4 310.56 p/s 322 s 495.34 % 273 MB 86 % 5161 s 592.33 q/s 103 %
5 358.42 p/s 279 s 571.68 % 260 MB 82 % 5455 s 560.40 q/s 98 %
6 380.23 p/s 263 s 606.46 % 249 MB 79 % 5244 s 582.95 q/s 102 %

Table 5.4: AMD Phenom II X4 955 Black Edition without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 59.77 p/s 1673 s - 312 MB - 5182 s 589.93 q/s -
2 121.95 p/s 820 s 204.02 % 605 MB 194 % 5542 s 551.61 q/s 94 %
3 185.19 p/s 540 s 309.81 % 736 MB 236 % 5975 s 511.63 q/s 87 %
4 250.63 p/s 399 s 419.30 % 871 MB 279 % 6424 s 475.87 q/s 81 %
5 245.70 p/s 407 s 411.06 % 994 MB 319 % 6657 s 459.22 q/s 78 %
6 246.91 p/s 405 s 413.09 % 1185 MB 380 % 7182 s 425.65 q/s 72 %

Table 5.5: AMD Phenom X4 9550 with Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 41.37 p/s 2417 s - 319 MB - 8203 s 372.67 q/s -
2 95.42 p/s 1048 s 230.63 % 281 MB 88 % 8000 s 382.13 q/s 103 %
3 155.04 p/s 645 s 374.73 % 270 MB 85 % 7843 s 389.77 q/s 105 %
4 200.00 p/s 500 s 483.40 % 269 MB 84 % 8062 s 379.19 q/s 102 %
5 160.77 p/s 622 s 388.59 % 251 MB 79 % 8171 s 374.13 q/s 100 %
6 205.34 p/s 487 s 496.30 % 263 MB 82 % 8312 s 367.78 q/s 99 %

Table 5.6: AMD Phenom X4 9550 without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 41.44 p/s 2413 s - 313 MB - 8187 s 373.40 q/s -
2 82.64 p/s 1210 s 199.42 % 606 MB 194 % 9000 s 339.67 q/s 91 %
3 122.25 p/s 818 s 294.99 % 738 MB 236 % 9765 s 313.06 q/s 84 %
4 134.95 p/s 741 s 325.64 % 869 MB 278 % 10484 s 291.59 q/s 78 %
5 123.61 p/s 809 s 298.27 % 995 MB 318 % 11015 s 277.53 q/s 74 %
6 132.45 p/s 755 s 319.60 % 1189 MB 380 % 11609 s 263.33 q/s 71 %
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Table 5.7: AMD Athlon 5350 with Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 34.40 p/s 2907 s - 314 MB - 9578 s 319.17 q/s -
2 77.16 p/s 1296 s 224.31 % 287 MB 91 % 9401 s 325.18 q/s 102 %
3 128.37 p/s 779 s 373.17 % 271 MB 86 % 9391 s 325.52 q/s 102 %
4 175.13 p/s 571 s 509.11 % 261 MB 83 % 9603 s 318.34 q/s 100 %
5 151.98 p/s 658 s 441.79 % 255 MB 81 % 9676 s 315.94 q/s 99 %
6 170.07 p/s 588 s 494.39 % 245 MB 78 % 9685 s 315.64 q/s 99 %

Table 5.8: AMD Athlon 5350 without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 35.42 p/s 2823 s - 317 MB - 9600 s 318.44 q/s -
2 68.82 p/s 1453 s 194.29 % 611 MB 193 % 10101 s 302.64 q/s 95 %
3 96.34 p/s 1038 s 271.97 % 742 MB 234 % 10971 s 278.64 q/s 88 %
4 134.41 p/s 744 s 379.44 % 878 MB 277 % 11519 s 265.39 q/s 83 %
5 110.74 p/s 903 s 312.62 % 996 MB 314 % 12129 s 252.04 q/s 79 %
6 118.20 p/s 846 s 333.69 % 1194 MB 377 % 12699 s 240.73 q/s 76 %

Table 5.9: Intel Pentium Dualcore E2140 with Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 56.34 p/s 1775 s - 314 MB - 5772 s 529.63 q/s -
2 106.95 p/s 935 s 189.84 % 279 MB 89 % 5631 s 542.89 q/s 103 %
3 122.25 p/s 818 s 216.99 % 266 MB 85 % 5709 s 535.47 q/s 101 %
4 150.60 p/s 664 s 267.32 % 264 MB 84 % 5787 s 528.25 q/s 100 %

Table 5.10: Intel Pentium Dualcore E2140 without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 56.21 p/s 1779 s - 311 MB - 5725 s 533.97 q/s -
2 95.60 p/s 1046 s 170.08 % 601 MB 193 % 6099 s 501.23 q/s 94 %
3 95.24 p/s 1050 s 169.43 % 730 MB 235 % 6614 s 462.20 q/s 87 %
4 107.99 p/s 926 s 192.12 % 864 MB 278 % 7456 s 410.01 q/s 77 %
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Table 5.11: Allwinner A20 SoC ARMv7-A, Banana Pro with Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 9.49 p/s 10539 s - 61 MB - 22453 s 136.15 q/s -
2 19.60 p/s 5102 s 206.57 % 50 MB 82 % 23727 s 128.84 q/s 95 %
3 21.48 p/s 4655 s 226.40 % 54 MB 89 % 23960 s 127.59 q/s 94 %
4 23.07 p/s 4335 s 243.11 % 46 MB 75 % 24043 s 127.15 q/s 93 %

Table 5.12: Allwinner A20 SoC ARMv7-A, Banana Pro without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 9.52 p/s 10500 s - 73 MB - 22499 s 135.87 q/s -
2 19.14 p/s 5226 s 200.92 % 89 MB 122 % 25767 s 118.64 q/s 87 %
3 19.35 p/s 5167 s 203.21 % 101 MB 138 % 28917 s 105.72 q/s 78 %
4 19.79 p/s 5052 s 207.84 % 126 MB 173 % 31831 s 96.04 q/s 71 %
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5.3.3 Profiling: Even more Speed with TCMalloc

Even though the multithreading performance is already better than expected, the greed for
speed can be satisfied even more. Profiling code is often almost obligatory to eliminate hidden
bottlenecks. The sample profiler33 from Microsoft Visual Studio Enterprise 2015 revealed
that over 55 % of the execution time was spent in system calls to malloc (33,85 %) and free
(21,86 %). Many vector objects are filled and resized during the insertion process, which is
the main reason why malloc and free are called this frequently. As a consequence, using a
faster malloc/free implementation does have a big impact on the insertion speed. There are
many malloc implementations which claim to be faster than the standard allocators operating
systems provide. Thread-Caching Malloc (TCMalloc) from Google34 is a popular one and it
is also used with the old nanocube implementation35. In order to use TCMalloc, a program
just needs to be linked with the library. The linker will “wire up” malloc and free calls into
TCMalloc instead of the standard allocation library. Instructions can be found on the official
GitHub Page36.

The insertion speedup measured is on average 23,15 % (15 - 37 %). The queries got processed
on average 13,47 % (10 – 19 %) faster. The memory consumption went up by an average of
2 %. Interestingly, the “additional” virtual (logical) cores of the Intel Core i7 CPU with
Hyper-Threading are now used more efficiently, too. The kink in the line graph of the
insertion speed (see fig. 5.5 Intel Core i7-4710HQ) shifted from seven to eight threads.

Table 5.13: TCMalloc Intel Core i7-4710HQ with Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 124.53 p/s 803 s - 313 MB - 3229 s 946.73 q/s -
2 284.09 p/s 352 s 228.13 % 285 MB 91 % 3208 s 952.93 q/s 101 %
3 456.62 p/s 219 s 366.67 % 273 MB 87 % 3235 s 944.98 q/s 100 %
4 549.45 p/s 182 s 441.21 % 275 MB 88 % 3257 s 938.59 q/s 99 %
5 512.82 p/s 195 s 411.79 % 264 MB 84 % 3418 s 894.38 q/s 94 %
6 649.35 p/s 154 s 521.43 % 263 MB 84 % 3287 s 930.03 q/s 98 %
7 746.27 p/s 134 s 599.25 % 250 MB 80 % 3341 s 915.00 q/s 97 %
8 877.19 p/s 114 s 704.39 % 249 MB 80 % 3384 s 903.37 q/s 95 %
9 917.43 p/s 109 s 736.70 % 242 MB 77 % 3342 s 914.72 q/s 97 %
10 961.54 p/s 104 s 772.12 % 246 MB 79 % 3322 s 920.23 q/s 97 %

33“The sampling profiling method interrupts the computer processor at set intervals and collects the function call
stack. Exclusive sample counts are incremented for the function that is executing and inclusive counts are in-
cremented for all of the calling functions on the call stack. Sampling reports present the totals of these counts
for the profiled module, function, source code line, and instruction.” - https://msdn.microsoft.com/en-
us/library/dd264994.aspx

34http://goog-perftools.sourceforge.net/doc/tcmalloc.html
35https://github.com/laurolins/nanocube#thread-caching-malloc-tcmalloc
36https://github.com/gperftools/gperftools
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Table 5.14: TCMalloc Intel Core i7-4710HQ without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 127.23 p/s 786 s - 311 MB - 3233 s 945.56 q/s -
2 253.16 p/s 395 s 198.99 % 604 MB 194 % 3441 s 888.40 q/s 94 %
3 364.96 p/s 274 s 286.86 % 735 MB 236 % 3636 s 840.76 q/s 89 %
4 469.48 p/s 213 s 369.01 % 875 MB 281 % 3831 s 797.96 q/s 84 %
5 476.19 p/s 210 s 374.29 % 1000 MB 322 % 3981 s 767.90 q/s 81 %
6 478.47 p/s 209 s 376.08 % 1195 MB 384 % 4145 s 737.52 q/s 78 %
7 467.29 p/s 214 s 367.29 % 1390 MB 447 % 4343 s 703.89 q/s 74 %
8 500.00 p/s 200 s 393.00 % 1478 MB 475 % 4489 s 681.00 q/s 72 %
9 497.51 p/s 201 s 391.04 % 1463 MB 470 % 4635 s 659.55 q/s 70 %
10 505.05 p/s 198 s 396.97 % 1598 MB 514 % 4767 s 641.28 q/s 68 %

Table 5.15: TCMalloc AMD Phenom II X4 955 Black Edition without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 87.34 p/s 1145 s - 309 MB - 4302 s 710.60 q/s -
2 194.17 p/s 515 s 222.33 % 279 MB 90 % 4370 s 699.54 q/s 98 %
3 322.58 p/s 310 s 369.35 % 270 MB 87 % 4376 s 698.58 q/s 98 %
4 448.43 p/s 223 s 513.45 % 264 MB 85 % 4358 s 701.47 q/s 99 %
5 510.20 p/s 196 s 584.18 % 257 MB 83 % 4438 s 688.82 q/s 97 %
6 552.49 p/s 181 s 632.60 % 258 MB 83 % 4416 s 692.26 q/s 97 %

Table 5.16: TCMalloc AMD Phenom II X4 955 Black Edition without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 85.84 p/s 1165 s - 303 MB - 4351 s 702.60 q/s -
2 172.41 p/s 580 s 200.86 % 604 MB 199 % 4808 s 635.82 q/s 90 %
3 256.41 p/s 390 s 298.72 % 736 MB 243 % 4998 s 611.64 q/s 87 %
4 336.70 p/s 297 s 392.26 % 873 MB 288 % 5294 s 577.45 q/s 82 %
5 340.14 p/s 294 s 396.26 % 998 MB 329 % 5568 s 549.03 q/s 78 %
6 348.43 p/s 287 s 405.92 % 1194 MB 394 % 5836 s 523.82 q/s 75 %
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Table 5.17: TCMalloc AMD Phenom X4 9550 with Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 48.22 p/s 2074 s - 315 MB - 7328 s 417.17 q/s -
2 114.42 p/s 874 s 131.01 % 285 MB 92 % 7265 s 420.78 q/s 101 %
3 192.31 p/s 520 s 220.19 % 272 MB 88 % 7406 s 412.77 q/s 99 %
4 263.85 p/s 379 s 302.11 % 275 MB 89 % 7609 s 401.76 q/s 96 %
5 273.22 p/s 366 s 312.84 % 264 MB 85 % 7625 s 400.92 q/s 96 %
6 315.46 p/s 317 s 361.20 % 259 MB 84 % 7453 s 410.17 q/s 98 %

Table 5.18: TCMalloc AMD Phenom X4 9550 without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 49.07 p/s 2038 s - 309 MB - 7359 s 415.41 q/s -
2 101.11 p/s 989 s 117.80 % 604 MB 199 % 7953 s 384.38 q/s 93 %
3 149.70 p/s 668 s 174.40 % 739 MB 244 % 8781 s 348.14 q/s 84 %
4 198.41 p/s 504 s 231.15 % 861 MB 284 % 9656 s 316.59 q/s 76 %
5 173.31 p/s 577 s 201.91 % 1008 MB 333 % 10343 s 295.56 q/s 71 %
6 208.77 p/s 479 s 243.22 % 1204 MB 397 % 11328 s 269.86 q/s 65 %

Table 5.19: TCMalloc AMD Athlon 5350 with Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 41.44 p/s 2413 s - 315 MB - 8163 s 374.49 q/s -
2 93.90 p/s 1065 s 226.57 % 285 MB 90 % 8233 s 371.31 q/s 99 %
3 151.98 p/s 658 s 366.72 % 271 MB 86 % 8330 s 366.99 q/s 98 %
4 204.92 p/s 488 s 494.47 % 280 MB 89 % 8493 s 359.94 q/s 96 %
5 210.08 p/s 476 s 506.93 % 264 MB 84 % 8393 s 364.23 q/s 97 %
6 248.76 p/s 402 s 600.25 % 269 MB 85 % 8417 s 363.19 q/s 97 %

Table 5.20: TCMalloc AMD Athlon 5350 without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 41.61 p/s 2403 s - 311 MB - 8257 s 370.23 q/s -
2 82.17 p/s 1217 s 231.96 % 606 MB 191 % 8951 s 341.53 q/s 107 %
3 124.22 p/s 805 s 350.68 % 738 MB 233 % 9473 s 322.71 q/s 101 %
4 163.13 p/s 613 s 460.52 % 874 MB 276 % 10062 s 303.82 q/s 95 %
5 138.12 p/s 724 s 389.92 % 1004 MB 317 % 10576 s 289.05 q/s 91 %
6 153.85 p/s 650 s 434.31 % 1203 MB 379 % 11238 s 272.02 q/s 85 %
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Table 5.21: TCMalloc Intel Pentium Dualcore E2140 with Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 76.39 p/s 1309 s - 313 MB - 4914 s 622.10 q/s -
2 170.65 p/s 586 s 223.38 % 285 MB 91 % 4976 s 614.35 q/s 99 %
3 188.32 p/s 531 s 246.52 % 276 MB 88 % 4976 s 614.35 q/s 99 %
4 207.04 p/s 483 s 271.01 % 263 MB 84 % 4992 s 612.38 q/s 98 %

Table 5.22: TCMalloc Intel Pentium Dualcore E2140 without Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 76.63 p/s 1305 s - 309 MB - 4898 s 624.13 q/s -
2 147.71 p/s 677 s 192.76 % 603 MB 195 % 5319 s 574.73 q/s 92 %
3 137.36 p/s 728 s 179.26 % 743 MB 240 % 5616 s 544.34 q/s 87 %
4 151.98 p/s 658 s 198.33 % 873 MB 283 % 5974 s 511.72 q/s 82 %

Table 5.23: TCMalloc Allwinner A20 SoC ARMv7-A, Banana Pro with Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 11.47 p/s 8721 s - 74 MB - 19323 s 158.21 q/s -
2 24.78 p/s 4035 s 216.13 % 57 MB 77 % 19891 s 153.69 q/s 97 %
3 27.23 p/s 3672 s 237.50 % 60 MB 81 % 19571 s 156.20 q/s 99 %
4 28.51 p/s 3508 s 248.60 % 53 MB 72 % 20332 s 150.35 q/s 95 %

Table 5.24: TCMalloc Allwinner A20 SoC ARMv7-A, Banana Pro without Quadtree Parti-
tion

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 11.41 p/s 8764 s - 75 MB - 19452 s 157.16 q/s -
2 23.02 p/s 4344 s 201.75 % 86 MB 115 % 22485 s 135.96 q/s 87 %
3 23.26 p/s 4300 s 203.81 % 104 MB 139 % 24938 s 122.58 q/s 78 %
4 23.42 p/s 4269 s 205.29 % 128 MB 171 % 27565 s 110.90 q/s 71 %

Table 5.25: TCMalloc Broadcom BCM2835 SoC ARMv6, Raspberry Pi B rev. 2 with
Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 6.22 p/s 16089 s - 74 MB - 38606 s 79.18 q/s -
2 5.67 p/s 17645 s 91.18 % 57 MB 77 % 45169 s 67.68 q/s 85 %
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Table 5.26: TCMalloc Broadcom BCM2835 SoC ARMv6, Raspberry Pi B rev. 2 without
Quadtree Partition

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 6.32 p/s 15828 s - 78 MB - 35653 s 85.74 q/s -
2 5.91 p/s 16909 s 93.61 % 98 MB 126 % 44195 s 69.17 q/s 81 %

Table 5.27: TCMalloc Intel Core i7-4710HQ with Quadtree Partition: up to 100 Threads

T. Speed Time Speedup Memory rel. Query time Query speed rel.

1 131.75 p/s 759 s - 315 MB - 3253 s 939.75 q/s -
2 281.69 p/s 355 s 213.80 % 287 MB 91 % 3261 s 937.44 q/s 100 %
3 446.43 p/s 224 s 338.84 % 273 MB 87 % 3221 s 949.08 q/s 101 %
4 574.71 p/s 174 s 436.21 % 286 MB 91 % 3211 s 952.04 q/s 101 %
5 671.14 p/s 149 s 509.40 % 258 MB 82 % 3251 s 940.33 q/s 100 %
6 775.19 p/s 129 s 588.37 % 265 MB 84 % 3271 s 934.58 q/s 99 %
7 833.33 p/s 120 s 632.50 % 255 MB 81 % 3273 s 934.01 q/s 99 %
8 900.90 p/s 111 s 683.78 % 250 MB 79 % 3269 s 935.15 q/s 100 %
9 934.58 p/s 107 s 709.35 % 242 MB 77 % 3290 s 929.18 q/s 99 %
10 1010.10 p/s 99 s 766.67 % 252 MB 80 % 3330 s 918.02 q/s 98 %
11 1041.67 p/s 96 s 790.63 % 239 MB 76 % 3301 s 926.08 q/s 99 %
12 1111.11 p/s 90 s 843.33 % 240 MB 76 % 3369 s 907.39 q/s 97 %
13 1136.36 p/s 88 s 862.50 % 230 MB 73 % 3341 s 915.00 q/s 97 %
14 1176.47 p/s 85 s 892.94 % 237 MB 75 % 3362 s 909.28 q/s 97 %
15 1234.57 p/s 81 s 937.04 % 239 MB 76 % 3390 s 901.77 q/s 96 %
16 1234.57 p/s 81 s 937.04 % 242 MB 77 % 3415 s 895.17 q/s 95 %
17 1315.79 p/s 76 s 998.68 % 234 MB 74 % 3382 s 903.90 q/s 96 %
18 1369.86 p/s 73 s 1039.73 % 231 MB 73 % 3431 s 890.99 q/s 95 %
19 1408.45 p/s 71 s 1069.01 % 234 MB 74 % 3453 s 885.32 q/s 94 %
20 1428.57 p/s 70 s 1084.29 % 232 MB 74 % 3444 s 887.63 q/s 94 %
21 1470.59 p/s 68 s 1116.18 % 238 MB 76 % 3443 s 887.89 q/s 94 %
22 1587.30 p/s 63 s 1204.76 % 227 MB 72 % 3456 s 884.55 q/s 94 %
23 1562.50 p/s 64 s 1185.94 % 234 MB 74 % 3462 s 883.02 q/s 94 %
24 1612.90 p/s 62 s 1224.19 % 227 MB 72 % 3481 s 878.20 q/s 93 %
25 1612.90 p/s 62 s 1224.19 % 232 MB 74 % 3530 s 866.01 q/s 92 %
26 1785.71 p/s 56 s 1355.36 % 226 MB 72 % 3521 s 868.22 q/s 92 %
27 1754.39 p/s 57 s 1331.58 % 229 MB 73 % 3554 s 860.16 q/s 92 %
28 1818.18 p/s 55 s 1380.00 % 229 MB 73 % 3552 s 860.64 q/s 92 %
29 1818.18 p/s 55 s 1380.00 % 229 MB 73 % 3552 s 860.64 q/s 92 %
30 1886.79 p/s 53 s 1432.08 % 228 MB 72 % 3564 s 857.74 q/s 91 %
31 1923.08 p/s 52 s 1459.62 % 227 MB 72 % 3565 s 857.50 q/s 91 %
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T. Speed Time Speedup Memory rel. Query time Query speed rel.

32 1960.78 p/s 51 s 1488.24 % 228 MB 72 % 3583 s 853.20 q/s 91 %
33 2000.00 p/s 50 s 1518.00 % 223 MB 71 % 3613 s 846.11 q/s 90 %
34 2000.00 p/s 50 s 1518.00 % 225 MB 71 % 3589 s 851.77 q/s 91 %
35 2083.33 p/s 48 s 1581.25 % 226 MB 72 % 3640 s 839.84 q/s 89 %
36 2083.33 p/s 48 s 1581.25 % 224 MB 71 % 3667 s 833.65 q/s 89 %
37 2127.66 p/s 47 s 1614.89 % 225 MB 71 % 3663 s 834.56 q/s 89 %
38 2222.22 p/s 45 s 1686.67 % 219 MB 70 % 3642 s 839.37 q/s 89 %
39 2272.73 p/s 44 s 1725.00 % 225 MB 71 % 3680 s 830.71 q/s 88 %
40 2272.73 p/s 44 s 1725.00 % 219 MB 70 % 3690 s 828.46 q/s 88 %
41 2325.58 p/s 43 s 1765.12 % 219 MB 70 % 3662 s 834.79 q/s 89 %
42 2380.95 p/s 42 s 1807.14 % 221 MB 70 % 3713 s 823.32 q/s 88 %
43 2380.95 p/s 42 s 1807.14 % 221 MB 70 % 3720 s 821.77 q/s 87 %
44 2439.02 p/s 41 s 1851.22 % 225 MB 71 % 3739 s 817.60 q/s 87 %
45 2500.00 p/s 40 s 1897.50 % 220 MB 70 % 3738 s 817.82 q/s 87 %
46 2500.00 p/s 40 s 1897.50 % 216 MB 69 % 3766 s 811.74 q/s 86 %
47 2564.10 p/s 39 s 1946.15 % 223 MB 71 % 3807 s 802.99 q/s 85 %
48 2564.10 p/s 39 s 1946.15 % 219 MB 70 % 3771 s 810.66 q/s 86 %
49 2631.58 p/s 38 s 1997.37 % 220 MB 70 % 3844 s 795.27 q/s 85 %
50 2702.70 p/s 37 s 2051.35 % 220 MB 70 % 3812 s 801.94 q/s 85 %
51 2631.58 p/s 38 s 1997.37 % 221 MB 70 % 3979 s 768.28 q/s 82 %
52 2702.70 p/s 37 s 2051.35 % 224 MB 71 % 3905 s 782.84 q/s 83 %
53 2777.78 p/s 36 s 2108.33 % 220 MB 70 % 3863 s 791.35 q/s 84 %
54 2777.78 p/s 36 s 2108.33 % 221 MB 70 % 3892 s 785.46 q/s 84 %
55 2941.18 p/s 34 s 2232.35 % 217 MB 69 % 3906 s 782.64 q/s 83 %
56 2777.78 p/s 36 s 2108.33 % 219 MB 70 % 3937 s 776.48 q/s 83 %
57 2857.14 p/s 35 s 2168.57 % 222 MB 70 % 3891 s 785.66 q/s 84 %
58 2941.18 p/s 34 s 2232.35 % 224 MB 71 % 3941 s 775.69 q/s 83 %
59 3125.00 p/s 32 s 2371.88 % 215 MB 68 % 3941 s 775.69 q/s 83 %
60 3030.30 p/s 33 s 2300.00 % 220 MB 70 % 3947 s 774.51 q/s 82 %
61 3030.30 p/s 33 s 2300.00 % 221 MB 70 % 3964 s 771.19 q/s 82 %
62 3125.00 p/s 32 s 2371.88 % 221 MB 70 % 3966 s 770.80 q/s 82 %
63 3125.00 p/s 32 s 2371.88 % 219 MB 70 % 3966 s 770.80 q/s 82 %
64 3225.81 p/s 31 s 2448.39 % 223 MB 71 % 3995 s 765.21 q/s 81 %
65 3225.81 p/s 31 s 2448.39 % 222 MB 70 % 4006 s 763.11 q/s 81 %
66 3225.81 p/s 31 s 2448.39 % 226 MB 72 % 4003 s 763.68 q/s 81 %
67 3333.33 p/s 30 s 2530.00 % 223 MB 71 % 4016 s 761.21 q/s 81 %
68 3333.33 p/s 30 s 2530.00 % 225 MB 71 % 4077 s 749.82 q/s 80 %
69 3333.33 p/s 30 s 2530.00 % 219 MB 70 % 4080 s 749.26 q/s 80 %
70 3448.28 p/s 29 s 2617.24 % 221 MB 70 % 4071 s 750.92 q/s 80 %
71 3333.33 p/s 30 s 2530.00 % 225 MB 71 % 4091 s 747.25 q/s 80 %
72 3448.28 p/s 29 s 2617.24 % 219 MB 70 % 4056 s 753.70 q/s 80 %
73 3448.28 p/s 29 s 2617.24 % 220 MB 70 % 4121 s 741.81 q/s 79 %
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T. Speed Time Speedup Memory rel. Query time Query speed rel.

74 3448.28 p/s 29 s 2617.24 % 227 MB 72 % 4138 s 738.76 q/s 79 %
75 3571.43 p/s 28 s 2710.71 % 221 MB 70 % 4122 s 741.63 q/s 79 %
76 3703.70 p/s 27 s 2811.11 % 223 MB 71 % 4129 s 740.37 q/s 79 %
77 3571.43 p/s 28 s 2710.71 % 225 MB 71 % 4151 s 736.45 q/s 78 %
78 3703.70 p/s 27 s 2811.11 % 227 MB 72 % 4167 s 733.62 q/s 78 %
79 3703.70 p/s 27 s 2811.11 % 228 MB 72 % 4197 s 728.38 q/s 78 %
80 3703.70 p/s 27 s 2811.11 % 227 MB 72 % 4158 s 735.21 q/s 78 %
81 3703.70 p/s 27 s 2811.11 % 228 MB 72 % 4196 s 728.55 q/s 78 %
82 3846.15 p/s 26 s 2919.23 % 227 MB 72 % 4178 s 731.69 q/s 78 %
83 3846.15 p/s 26 s 2919.23 % 228 MB 72 % 4224 s 723.72 q/s 77 %
84 3846.15 p/s 26 s 2919.23 % 227 MB 72 % 4268 s 716.26 q/s 76 %
85 4000.00 p/s 25 s 3036.00 % 227 MB 72 % 4277 s 714.75 q/s 76 %
86 4000.00 p/s 25 s 3036.00 % 231 MB 73 % 4243 s 720.48 q/s 77 %
87 3846.15 p/s 26 s 2919.23 % 233 MB 74 % 4270 s 715.93 q/s 76 %
88 4000.00 p/s 25 s 3036.00 % 231 MB 73 % 4275 s 715.09 q/s 76 %
89 4166.67 p/s 24 s 3162.50 % 233 MB 74 % 4363 s 700.66 q/s 75 %
90 4000.00 p/s 25 s 3036.00 % 236 MB 75 % 4321 s 707.48 q/s 75 %
91 3846.15 p/s 26 s 2919.23 % 234 MB 74 % 4323 s 707.15 q/s 75 %
92 4166.67 p/s 24 s 3162.50 % 236 MB 75 % 4337 s 704.87 q/s 75 %
93 4166.67 p/s 24 s 3162.50 % 237 MB 75 % 4347 s 703.24 q/s 75 %
94 4166.67 p/s 24 s 3162.50 % 239 MB 76 % 4346 s 703.41 q/s 75 %
95 4166.67 p/s 24 s 3162.50 % 234 MB 74 % 4360 s 701.15 q/s 75 %
96 4166.67 p/s 24 s 3162.50 % 237 MB 75 % 4401 s 694.61 q/s 74 %
97 4166.67 p/s 24 s 3162.50 % 236 MB 75 % 4387 s 696.83 q/s 74 %
98 4166.67 p/s 24 s 3162.50 % 240 MB 76 % 4412 s 692.88 q/s 74 %
99 4545.45 p/s 22 s 3450.00 % 239 MB 76 % 4420 s 691.63 q/s 74 %
100 4347.83 p/s 23 s 3300.00 % 238 MB 76 % 4437 s 688.98 q/s 73 %
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6 Save and Load

This chapter describes how the in-memory data structure Nanocubes is saved to disk and
loaded back into memory.

The data structure mostly consists of intertwined 64-bit pointers in RAM. Normal pointers
store absolute addresses in the virtual address space of a program. When loading back a
nanocube from disk into memory, the objects the pointers pointed to are located at random
addresses on potentially every program start. This is due to the Address Space Layout
Randomization (ASLR), which practically every modern PC operating system performs.
Storing absolute addresses does imply the need to traverse the whole data structure to make
up for the random address offset the operating system applied to the nanocube process. This
tedious procedure can be circumvented by storing relative addresses. Offset pointers store the
distance from their own this pointer to the object they point to. As a consequence, calculating
the conversion from and to absolute addresses is an overhead of subtracting resp. adding two
64-bit integers. “Dereferencing” an offset pointer yields the correct absolute address even
if the offset pointer and the referenced object are stored at addresses with a random offset
applied from ASLR, because the stored distance is still the same inside the nanocube memory
block.

Before the change to offset pointers, tagged pointers where used in several places like the
container classes small_raw_vector and small_vector as well as in the Node and Link classes.
Tagged pointers are pointers in which additional information is stored besides the actual
address. In the case of Nanocubes, the most significant sixteen bits of the sixty-four bit pointers
where used to store information like shared node flag, node type or last index number inserted
into container. The offset in the offset pointers is stored in a sixty-four bit signed integer,
which is why they cannot be tagged. It would mess up the two’s complement, which is used to
efficiently represent negative numbers in computers. Therefore, every information previously
stored in tagged pointers is now stored in separate variables, resulting in a moderately higher
memory usage.

The previous memory allocation strategy was composed of a pool and a Kernighan-Ritchie
allocator, but was not effective. A slab allocator implementation from Lauro Lins, which
uses offset pointers, is now in use. “With slab allocation, memory chunks suitable to fit data
objects of certain type or size are preallocated. The slab allocator keeps track of these chunks,
known as caches, so that when a request to allocate memory for a data object of a certain type
is received, it can instantly satisfy the request with an already allocated slot. Destruction of
the object does not free up the memory, but only opens a slot which is put in the list of free
slots by the slab allocator. The next call to allocate memory of the same size will return the
now unused memory slot. This process eliminates the need to search for suitable memory
space and greatly alleviates memory fragmentation. In this context, a slab is one or more
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contiguous pages in the memory containing pre-allocated memory chunks.”1

The slab allocator itself operates on a memory-mapped file. On Linux and Mac operating
systems, the system call mmap is used to create such objects. On windows operating systems,
the mmap wrapper mman-win322 is used to map the mmap function calls to the windows
memory-map functions CreateFileMapping and MapViewOfFile. Read chapter 7 Nanocubes
on Windows for more details on the differences between the operating systems regarding
memory-mapped files.

A MemoryBlock object functions as an interface to the memory-mapped file, which the slab
allocator uses to allocate memory itself in a sequential manner. In order to save a nanocube
to disk, the memory block the nanocube is created on just needs to be written to a file. All
necessary objects to reload a nanocube are located inside the MemoryBlock. Therefore, loading
a nanocube is just a matter of linearly reading in the saved file back into a MemoryBlock. The
allocator object instance can be “recovered” by simply assigning (casting) the start address
(base pointer) of the MemoryBlock to an Allocator pointer, because the allocator stores itself as
the first object in the MemoryBlock. This is similar to the Nanocube object(s), whose offset
pointers are saved in the _root variable of an allocator object.

Due to the memory-mapping, nanocubes can be built, saved and loaded even if they exceed
the size of physically available RAM. Classic hard disk drives are not suitable to compensate
an insufficient amount of RAM, because the data structure nanocubes is not of a linear nature
and therefore requires storage devices that are capable of performing fast random read and
write operations. Solid-state drives (SSD), especially models with NVM Express (NVMe)
interface, fulfill this requirement and could be used in production systems to work with very
big nanocubes, that do not fit into RAM.

Every nanocube part has its own allocator object instance, because this enables the option
to load different nanocubes (parts), that have the same nanocube scheme, as one nanocube.
For the same reason, every nanocube part is saved into a separate file. This can be handy
when working with historic data. For instance, nanocubes from last week can be loaded
together with nanocubes from the current week to get a nanocube that visualizes both weeks’
data.

6.1 Compression

A raw nanocube file is highly compressible. For example, the dataset mentioned in sec-
tion 5.3 Benchmarks takes up over 17.2 GB as an eight parted nanocube. By using the bzip2
compression algorithm in standard mode, the files can be shrunk down to 1.93 GB (ca. 11 %).

To avoid additional steps when working with compressed nanocubes, direct gzip and bzip2
support is added. When loading nanocubes, bzip2 and gzip files are recognized by the file
extensions .bz2 and .gz. Enabling compression when storing nanocubes works alike.

Since the Boost C++ libraries3 were already in use, Boost.Iostreams4 was chosen to add

1https://en.wikipedia.org/wiki/Slab_allocation#Basis
2https://github.com/witwall/mman-win32
3http://www.boost.org/
4http://www.boost.org/doc/libs/1_61_0/libs/iostreams/doc/index.html
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compression capabilities to the program. On windows operating systems gzip and bzip2
support is disabled by default. The library needs to be compiled with a command line
supplying either file paths to the locations of the headers and binaries of the compression
algorithms, if using pre-built binaries, or to the locations of the source files, if building from
the source5. For example:
b2.exe link=static threading=multi address-model=64
-sBZIP2_SOURCE="E:\bzip2-1.0.6" -sZLIB_SOURCE="E:\zlib-1.2.8"
--build-type=complete stage
This will build Boost on windows as a static 64-bit multi-threading library with gzip and

bzip2 support. The stated directories contain the source codes of the compression algorithms.
This step might be necessary on other operating systems too, if pre-built libraries are in use6.

To minimize the additional time spent when working with compression, nanocube parts
get compressed and decompressed in parallel. The concurrent processing is implemented
similar to the Future and async construct in the merging code described in section 5.2 C++11
Implementation.

A filtering stream buffer (filtering_streambuf ) of type input from the boost iostreams library
is used to decompress either gzip or bzip2 files on the fly into memory. A basic array sink of
type char wraps the MemoryBlock a nanocube part is reloaded into. In order to use the copy
method of the library, the basic array sink needs to be wrapped one more time into a stream
object. copy reads from the filtering stream buffer, which performs the decompression, and
writes it into the main memory resp. the chain of stream, sink and MemoryBlock.

Saving the data structure works very similar. A filtering stream buffer of the same type as
above performs the compression on the fly while reading from a array_source, which wraps
the MemoryBlock.

The nanocube schema7 gets stored as a string with the name annotation in every Nanocube
object (part). The annotation of the nanocube part, which got load first, is used to “recon-
struct” the schema object. Given the vector of loaded nanocube objects and the schema, the
run method inside the main function is called similarly to the procedure when building a new
nanocube8.

Listing 6.1: C++11 implementation for loading nanocubes back into memory
1 s t d : : v ec tor<s t d : : s t r i n g > f i l eNames ;
2 boos t : : s p l i t ( f i l eNames , o p t i o n s . l o a d . g e t V a l u e ( ) ,
3 boos t : : i s _ a n y _ o f ( " , " ) ) ;
4
5 // r e a d in e v e r y nanocube
6 s t d : : v ec tor<nanocube_type∗> nanocubes ;
7 s t d : : mutex nanocubesMutex ;
8 s t d : : v ec tor<s t d : : f u t u r e<nanocube_type∗>> nanocubeFutures ;
9 for ( s t d : : s t r i n g f i l eName : f i l eNames ) {

5http://www.boost.org/doc/libs/1_61_0/libs/iostreams/doc/installation.html
6Homebrew — The missing package manager for OS X, did install Boost without gzip and bzip2 support
7see section 4.1 Building a Nanocube from raw data
8read section 5.2 C++11 Implementation for more information
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10 nanocubeFutures . push_back ( s t d : : a sync ( s t d : : l aunch : : async ,
11 [&fi leNames , &opt ions , &nanocubes , &nanocubesMutex ]
12 ( s t d : : s t r i n g f i l eName ) {
13 i f ( ! f i l e E x i s t s ( f i l eName ) ) {
14 s t d : : cout << "Can not l oa d inpu t f i l e : " << f i l eName
15 << s t d : : end l ;
16 s t d : : f l u s h ( s t d : : cout ) ;
17 throw s t d : : r u n t i m e _ e r r o r ( "Can not lo a d inpu t f i l e " ) ;
18 }
19 e l s e {
20 // g e t f i l e s i z e
21 s t d : : i f s t r e a m i f s t r e a m ( fi leName , s t d : : i o s : : a t e |
22 s t d : : i o s : : b ina ry ) ;
23 auto f i l e S i z e = i f s t r e a m . t e l l g ( ) ;
24 i f s t r e a m . s e e k g ( 0 , s t d : : i o s : : beg ) ;
25
26 s t d : : u i n t 6 4 _ t a r e n a _ s i z e =
27 o p t i o n s . max_nanocube_s ize . i s S e t ( ) ?
28 ( ( u i n t 6 4 _ t ) o p t i o n s . max_nanocube_s ize . g e t V a l u e ( ) ) ∗
29 1024 ∗ 1024 ∗ 1024 :
30 ARENA_SIZE ;
31 a r e n a _ s i z e /= ( s t d : : u i n t 6 4 _ t ) f i l eNames . s i z e ( ) ;
32 # i f d e f _WIN32
33 s t d : : w s t r i n g _ c o n v e r t<s t d : : c o d e c v t _ u t f 8 _ u t f 1 6<wchar_t>>
34 c o n v e r t e r ;
35 a l l o c : : u t i l : : MMap∗ mmap = new a l l o c : : u t i l : : MMap(
36 a r e n a _ s i z e , o p t i o n s . temp_path . i s S e t ( ) ?
37 &c o n v e r t e r . f rom_bytes ( o p t i o n s . temp_path . g e t V a l u e ( ) ) :
38 n u l l p t r ) ;
39 # e l s e
40 a l l o c : : u t i l : : MMap∗ mmap = new a l l o c : : u t i l : : MMap(
41 a r e n a _ s i z e ) ;
42 # e n d i f
43 // r e a d f i l e i n t o mmap
44 auto mbBase = s t a t i c _ c a s t <char ∗>(
45 mmap−>memory_block ( ) . b a s e ( ) ) ;
46 i f ( ! boos t : : ends_with ( f i leName , " . gz " ) &&
47 ! boos t : : ends_with ( f i leName , " . bz2 " ) )
48 i f s t r e a m . r e a d ( mbBase , f i l e S i z e ) ;
49 e l s e {
50 boos t : : i o s t r e a m s : : f i l t e r i n g _ s t r e a m b u f <
51 boos t : : i o s t r e a m s : : input> in ;
52 i f ( boos t : : ends_with ( f i leName , " . gz " ) )
53 in . push ( boos t : : i o s t r e a m s : : gz ip_decompre s sor ( ) ) ;
54 e l s e
55 in . push ( boos t : : i o s t r e a m s : : bz ip2_decompre s sor ( ) ) ;
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56 in . push ( i f s t r e a m ) ;
57 boos t : : i o s t r e a m s : : b a s i c _ a r r a y _ s i n k<char>
58 mbBaseArraySink ( mbBase , a r e n a _ s i z e ) ;
59 boos t : : i o s t r e a m s : : s tream<
60 boos t : : i o s t r e a m s : : b a s i c _ a r r a y _ s i n k<char>>
61 sMbBaseArraySink ( mbBaseArraySink ) ;
62 boos t : : i o s t r e a m s : : copy ( in , sMbBaseArraySink ) ;
63 }
64
65 // g e t S l a b A l l o c a t o r back from r e a d in memoryblock
66 A l l o c a t o r ∗ s l a b _ a l l o c a t o r =
67 r e i n t e r p r e t _ c a s t<A l l o c a t o r ∗>(mbBase ) ;
68 S l abAl loca to rWrapper : : add ( s l a b _ a l l o c a t o r ) ;
69
70 // g e t n a n o c u b e s back from r e a d in memory b l o c k
71 return r e i n t e r p r e t _ c a s t<nanocube_type ∗>(
72 s l a b _ a l l o c a t o r −>root ( ) ) ;
73 }
74 } , f i l eName ) ) ;
75 }
76 //w a i t f o r t h r e a d s t o c o m p l e t e , s t o r e nanocube in v e c t o r
77 for ( auto& nanocubeFuture : nanocubeFutures )
78 nanocubes . push_back ( nanocubeFuture . g e t ( ) ) ;
79
80 auto f i r s t N a n o c u b e = nanocubes . f r o n t ( ) ;
81
82 // l o a d h e a d e r
83 s t d : : cout << " Annotat ion : " << f i r s tNanocube−>ge tAnnota t ion ( )
84 << s t d : : end l ;
85 s t d : : s t r i n g s t r e a m ( f i r s tNanocube−>ge tAnnota t ion ( ) ) >> header ;
86 s t d : : cout << " Loaded nanocube from f i l e " << s t d : : end l ;
87
88 Schema schema ( header ) ;
89
90 run ( s t d : : c in , nanocubes , schema ) ;

Listing 6.2: C++11 implementation for storing nanocubes to disk
1 s t a t i c void s a v e ( s t d : : s t r i n g f i l eName ) {
2 s t d : : s t r i n g f i l e E n d i n g ;
3 s t d : : s t r i n g f i leNameWithoutEnding ;
4 i f ( boos t : : ends_with ( f i leName , " . gz " ) ) {
5 f i l e E n d i n g = " . nc . gz " ;
6 f i leNameWithoutEnding = f i l eName . s u b s t r ( 0 , f i l eName . l e n g t h ( )
7 − 2 ) ;
8 }
9 e l s e i f ( boos t : : ends_with ( f i leName , " . bz2 " ) ) {
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10 f i l e E n d i n g = " . nc . bz2 " ;
11 f i leNameWithoutEnding = f i l eName . s u b s t r ( 0 , f i l eName . l e n g t h ( )
12 − 3 ) ;
13 }
14 e l s e {
15 f i l e E n d i n g = " . nc " ;
16 f i leNameWithoutEnding = f i l eName . s u b s t r ( 0 , f i l eName . l e n g t h ( )
17 − 2 ) ;
18 }
19
20 i n t f i leNumber = 0 ;
21 s t d : : v ec tor<s t d : : f u t u r e<void>> s t o r F u t u r e s ;
22 for ( A l l o c a t o r ∗ a l l o c a t o r : s l a b _ a l l o c a t o r s ) {
23 s t o r F u t u r e s . push_back ( s t d : : a sync ( s t d : : l aunch : : async ,
24 [&] ( A l l o c a t o r ∗ a l l o c a t o r , i n t f i leNumber ) {
25 s t d : : s t r i n g tmpFileName = f i leNameWithoutEnding ;
26 s t d : : o f s t r e a m o f s t r ( tmpFileName . append (
27 s t d : : t o _ s t r i n g ( f i leNumber ) . append ( f i l e E n d i n g ) ) ,
28 s t d : : i o s : : b ina ry ) ;
29 auto mb = a l l o c a t o r −>memory_block ( ) ;
30
31 i f ( f i l e E n d i n g == " . nc " )
32 o f s t r . w r i t e ( s t a t i c _ c a s t <const char ∗>(mb. b a s e ( ) ) ,
33 mb. s i z e ( ) ) ;
34 e l s e {
35 boos t : : i o s t r e a m s : : f i l t e r i n g _ s t r e a m b u f <
36 boos t : : i o s t r e a m s : : input> in ;
37 i f ( f i l e E n d i n g == " . nc . gz " )
38 in . push ( boos t : : i o s t r e a m s : : gz ip_compre s sor ( ) ) ;
39 e l s e // . bz2
40 in . push ( boos t : : i o s t r e a m s : : bz ip2_compres sor ( ) ) ;
41 in . push ( boos t : : i o s t r e a m s : : a r r a y _ s o u r c e (
42 s t a t i c _ c a s t <const char ∗>(mb. b a s e ( ) ) , mb. s i z e ( ) ) ) ;
43 boos t : : i o s t r e a m s : : copy ( in , o f s t r ) ;
44 }
45 } , a l l o c a t o r , f i leNumber ) ) ;
46
47 f i leNumber++;
48 }
49
50 //w a i t f o r t h r e a d s t o f i n i s h
51 for ( auto& s t o r F u t u r e : s t o r F u t u r e s )
52 s t o r F u t u r e . g e t ( ) ;
53 }
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6.2 32-bit Support

The nanocube implementation was intended to run only on 64-bit systems. The switch
from tagged pointers to offset pointers has the fortunate side effect of making the program
compatible to outdated but still used 32-bit computer systems. Even though the offset inside
the offset pointers is stored as a 64-bit integer, dereferencing them on 32-bit systems works
too, because truncating the first thirty-two most significant bits of a 64-bit pointer will never
cause complications in this context; 32-bit operating systems return by definition only 32-bit
memory addresses. Truncating tagged pointers would “cut off” the additional information
stored inside the pointer, which would have caused problems.

The memory usage is significantly lower when using 32-bit binaries. For example, the same
dataset used up about 40 % less RAM on the same computer when using a 32-bit compilation.
This effect is probably due to the fact that 32-bit pointers are half the size of 64-bit pointers. I
assume that modern C++ compilers are able to optimize out the obsolete part of the 64-bit
(offset) pointers for 32-bit compilations. I can not think of another reason why a 32-bit
nanocube would be about half the size of a 64-bit version. A noteworthy difference in build
time was not encountered. Therefore, it does make sense to use 32-bit binaries even on 64-bit
systems, if the build nanocube does not exceed the 32-bit memory boundary of 4 GB.

This boundary is also the reason why the maximum nanocube size must always be limited
to at most 4 GB when using 32-bit binaries with the -g command line parameter in gigabytes.
The default maximum nanocube size of 32 GB on windows and 1 TB on Linux and Mac
cannot be addressed with a 32-bit process.
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7 Nanocubes on Windows

This chapter describes the changes that were made to make the Nanocube project compatible
with Microsoft Windows operating systems.

Nanocubes was primarily developed on Apple Mac OS with the integrated development
environment (IDE) Xcode. Because C++11 is a very powerful and complex programming
language, Xcode is up to this date1 incapable of performing everyday refactoring task like
renaming a variable or method. For that reason, I chose to continue programming with
Microsoft Visual Studio 2015, which does support C++11 with proper refactoring.

Visual Studio resp. Windows operating systems do not use nor provide the unistd.h header
file, which provides access to the POSIX operating system API on Unix-like systems2. On
Windows, the header file io.h can be used instead. For that reason, every source file which
includes unistd.h now uses a preprocessor condition to automatically include the correct
header file depending on which operating system it is compiled on:

Listing 7.1: Precompiler directives to include header files depending on the operating system
1 # i f d e f _WIN32
2 # inc lude <i o . h>
3 # e l s e
4 # inc lude <u n i s t d . h>
5 # end i f

The memory mapping implementations on windows and Linux/Mac behave differently.
Linux and Mac use anonymous file mappings with a size of 1 TB, which are not backed by
any file, accept the swap file if necessary. Creating them on Windows operating systems does
require a contiguous memory block the size of the mapping. Due to the limited size and a
possible fragmentation of the RAM and the swap file, a large enough contiguous memory
blocks can be impossible to find. For that reason, the windows version of Nanocubes uses
file-backed mappings instead. Temporary files are created, one for each nanocube part, with a
total default size of 32 GB. The size can be adjusted with the -g command line parameter in
gigabytes. Standardly, the files are located in the systems default temporary folder, but this
can be changed with the -w command line parameter. This command line parameter is not
present on compilations for Linux or Mac. The temporary files are deleted automatically by
the operating system once all handles are closed, which is usually the case after exiting the
nanocube program.

File streams and the standard input stream (stdin) operate in binary mode by default on
Linux and Mac operation systems. Windows’ default is text mode, which is why the read

1September 9, 2016
2https://en.wikipedia.org/wiki/Unistd.h
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function in several places stopped reading at the first 0x0A byte, which is the ASCII code for
line feed indicating a newline. For that reason, every file stream constructor is now specifically
parameterized to open the stream in binary mode. Moreover, on Windows the _setmode
function is used to change the mode from standard input (stdin) to binary.

Visual Studio found programming errors which Xcode ignored like missing includes,
variables which were out of scope and wrong typenames in template definitions. Visual
Studio had a few smaller bugs too, which needed workarounds. In general, using both IDEs
during the development of Multi-part Nanocubes was helpful, because often the same problem
generated different error messages in the IDEs with a different degree of usefulness.

DMP files generated on windows use carriage return and line feed as line endings, instead
of just a line feed. The nanocube code is adapted accordingly to support both types of line
endings.

The third party libraries the nanocube program uses do all feature windows support.
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8 Future

Further development of the Nanocube project is done by the Information Visualization
department at AT&T Labs Research situated in New York City. Since the project is open
source, others might participate, too. Currently1, a compressed version of Nanocubes is in
the works, which could greatly reduce the memory consumption by a factor of more than
ten times. Faster queries will be possible, too. Moreover, faster insertion and the multi-part
work described in this document will also apply naturally2.

The quadtree partition resp. the split points of a nanocube part should be stored inside the
nanocube file, too. This would remove the need to manually store the addresses, if adding
new points later on is planned.

The prediction of the remaining build time could be improved by basing it on a conceived
mathematical model that takes the rising insertion complexity into account.

1September 9, 2016
2Email from Lauro Lins to Lukas Scharlau, April 4, 2016
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9 Appendix

9.1 Pseudocode: Merging two Nanocubes

The following pseudocode is based on the original nanocube pseudocode1. The function Com-
bine recursively merges nanocube A into nanocube B. The resulting nanocube is equivalent
to a nanocube built by the original pseudocode. Similarly to the nanocube paper2, the code is
designed for nanocubes with a temporal dimension as the last dimension.

Nanocube A is fully traversed in a depth-first search manner from left to right and compared
against nanocube B to find and if necessary add missing data into it. The first function call is
parameterized with the two root nodes of the nanocubes in question and the number of the
first dimension level.

The code first recursively builds up a call stack down to the last node of the current
dimension tree while creating missing nodes in nanocube B. Missing content nodes are
created and shared nodes are copied to insert new additional content without corrupting the
dataset. If the last dimension is reached all content from nanocube A’s node is copied to the
corresponding node in nanocube B. The copy function needs to only copy new data, that is
not already present in nanocube B. When working the paths back from bottom to the top of
the dimension trees, shared connections are made.

Notice that the original pseudo code in the nanocube paper has a bug that I found while
working with it to develop this pseudo code:

“ShallowCopy as written in the pseudo-code only works for internal nodes, not for time
series. Line 14 should be something like:3”

1 Se tProperContent ( node , d=dim ( S ) ?
2 CopySummedTableTimeSeries ( Content ( node ) ) :
3 ShallowCopy ( Content ( node ) ) )

Listing 9.1: Pseudocode for merging two nanocubes
1 Combine ( Node A, Node B , i n t dimens ion ) {
2 f o r e a c h ( Childnode CA in A. c h i l d s ) {
3 Childnode CB = B . c h i l d s [CA. Lab le ] ;
4
5 i f (CB == n u l l ) {
6 CB = new Node (CA. Lab l e ) ;
7 B . c h i l d s . add (CB ) ;

1[LKS13] Lins, Klosowski, and Scheidegger (2013): fig. 3, p. 3
2cf. fn. footnote 1
3Lauro Lins: https://github.com/laurolins/nanocube/issues/31
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8 }
9 // o n l y in F l a t t r e e ?

10 e l s e i f (CB. i s S h a r e d C h i l d ) {
11 CB = shallowCopy (CB ) ;
12 B . c h i l d s [CA. Lab le ] = CB;
13 }
14
15 Combine (CA, CB, dimens ion ) ;
16 }
17
18 //Add Content from Node A t o Node B
19
20 bool i sL a s tD i mens i on = dimens ion == dim ( S ) ;
21
22 i f ( B . c h i l d s . count == 1 ) {
23 s e t S h a r e d C o n t e n t ( B . Content , B . c h i l d s [ 0 ] . Content ) ;
24 return ; // n o t h i n g more t o do f o r t h i s node
25 }
26 e l s e i f ( B . Content . i s S h a r e d C o n t e n t )
27 B . Content = i sL a s tD i mens i on ? copySummedTableTimeSeries ( B . Content )
28 : shallowCopy ( B . Content ) ;
29 e l s e i f ( B . Content == n u l l )
30 B . Content = i sL a s tD i mens i on ? new SummedTableTimeSeries ( )
31 : new Node ( ) ;
32
33 i f ( i sLa s tD ime ns ion ) //Copy T a b l e T i m e S e r i e s from Node A t o Node B
34 f o r e a c h ( Object o in A. Content )
35 B . Content . add ( o ) ; // Problem : Add o n l y new o b j e c t s !
36 e l s e //Combine t h e Content from Node A i n t o Node B
37 Combine (A. Content , B . Content , d imens ion + 1 ) ;
38 }

9.2 UML class diagram

The UML class diagram on the next page contains all classes and their relations mentioned in
chapter 5 Multi-part Nanocubes. The diagram should help to get an overview of the program
parts in question and the changes I made to implement Multi-part Nanocubes. The diagram
does not include all classes nor all class relations of the nanocube program.
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cd Mulitpart Nanocubes
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QuadTree

Attributes

Operations

+ empty() : const bool

+ insert(path : Path) : QuadTree&
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Attributes

Operations

+ Iterator(quadtree : const QuadTree&)
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Attributes

+ label : uint8_t
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Operations
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+ part(key : const int&) : int

+ PartitionFunction(num_parts : int, total_count : uint64_t)
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Key:Class
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Operations
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+ toDegrees() : DegreesPoint

+ toString() : std::string
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Operations
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+ toDegrees() : DegreesPoint

+ toMercator() : MercatorPoint

+ toString() : std::string
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Attributes

+ x : int

+ y : int

+ z : int

Operations

+ bounds() : MercatorPoint*

+ fromDegrees(p : DegreesPoint, z : int) : Tile

+ fromMercator(p : MercatorPoint, z : int) : Tile

+ max() : MercatorPoint
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+ toString() : std::string
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Nanocubes

InternalNode

Attributes

Operations

+ getContent() : offset_ptr<Node<Summary>>

+ getContentOwnership() : OwnershipType

+ getLabelToParent() : int16_t

+ getParent() : offset_ptr<Node<Summary>>

+ InternalNode(nanocubeNumber : int)

+ isContentProper() : bool

+ isContentShared() : bool

+ setContent(content : offset_ptr<Node<Summary>>, otype : OwnershipType) : void

+ setParent(parent : offset_ptr<Node<Summary>>, label : int16_t) : void

+ shallowCopy(other : const offset_ptr<InternalNode>) : void

Summary:Class=TimeSeries

ChildrenIterator

Attributes

+ index : int

Operations

+ ChildrenIterator(node : offset_ptr<Node<Summary>>)

+ next(next_label : int16_t&) : offset_ptr<Node<Summary>>

+ reset() : void

Summary:Class=TimeSeries

Parent

Attributes

Operations

+ copyChildrenAsShared(other : const offset_ptr<Parent>) : void

+ getChild(label : Label) : offset_ptr<node_type>

+ getChild(label : Label, otype : OwnershipType&) : offset_ptr<node_type>

+ getNumChildren() : std::size_t

+ Parent(type : NodeType, nanocubeNumber : int)

+ setChild(label : Label, child : offset_ptr<node_type>, otype : OwnershipType) : void

Summary:Class=TimeSeries

LeafNode

Attributes

Operations

+ getContent() : offset_ptr<Node<Summary>>

+ getContentOwnership() : OwnershipType

+ getLabelToParent() : int16_t

+ getParent() : offset_ptr<Node<Summary>>

+ isContentProper() : bool

+ isContentShared() : bool

+ LeafNode()

+ setContent(content : offset_ptr<Node<Summary>>, otype : OwnershipType) : void

+ setParent(parent : offset_ptr<Node<Summary>>, label : int16_t) : void

+ shallowCopy(other : const offset_ptr<LeafNode>) : void

Summary:Class=TimeSeries

Link

Attributes

+ label : uint16_t

+ share_flag : uint16_t

Operations

+ getLabel() : int16_t

+ getNode() : offset_ptr<Node<Summary>>

+ getOwnership() : OwnershipType

+ isProper() : bool

+ isShared() : bool

+ Link(label : int16_t, node : offset_ptr<Node<Summary>>, otype : OwnershipType)

+ setLabel(label : int16_t) : void

+ setNode(ptr : offset_ptr<Node<Summary>>) : void

+ setOwnership(flag : OwnershipType) : void

Summary:Class=TimeSeries

SlabAllocatorWrapper

Attributes

+ slab_allocators : std::vector<Allocator*>

Operations

+ add(sa : Allocator*) : void

+ free(ptr : void*, size : std::size_t, nanocubeNumber : int) : void

+ has_suffix(str : const std::string&, suffix : const std::string&) : bool

+ malloc(size : std::size_t, nanocubeNumber : int) : void*

+ save(fileName : std::string) : void

OwnershipType
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Literals

PROPER

SHARED

NodeType

«enumeration»
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INTERNAL

LEAF

ROOT

SUMMARY

Node

Attributes

+ free : uint16_t

+ node_type : uint16_t

+ share_flag : uint16_t

Operations

+ asConstParent() : offset_ptr<parent_node_type>

+ asParent() : offset_ptr<parent_node_type>

+ asSummaryNode() : offset_ptr<summary_node_type>

+ getBaseOwnership() : OwnershipType

+ getBasePtr() : offset_ptr<Node>

+ getChild(label : Label) : offset_ptr<Node>

+ getChild(label : Label, otype : OwnershipType&) : offset_ptr<Node>

+ getChildren() : link_vector_type&

+ getContent() : offset_ptr<Node>

+ getContentOwnership() : OwnershipType

+ getLabelToParent() : Label

+ getNumChildren() : std::size_t

+ getOwner() : offset_ptr<Node>

+ getParent() : offset_ptr<Node>

+ getType() : NodeType

+ isBaseProper() : bool

+ isBaseShared() : bool

+ Node(type : NodeType)

+ setBaseOwnership(flag : OwnershipType) : void

+ setBasePtr(node : offset_ptr<Node>) : void

+ setChild(label : Label, child : offset_ptr<Node>, otype : OwnershipType) : void

+ setContent(content : offset_ptr<Node>, otype : OwnershipType) : void

+ setOwner(content : offset_ptr<Node>) : void

+ setParent(parent : offset_ptr<Node>, label : Label) : void
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SummaryNode

Attributes

Operations

+ getOwner() : offset_ptr<Node<Summary>>

+ setOwner(owner : offset_ptr<Node<Summary>>) : void

+ shallowCopy(other : const offset_ptr<SummaryNode>) : void

+ SummaryNode(nanocubeNumber : int)

Summary:Class=TimeSeries

TimeSeries

Attributes

+ sequence_of_variables : small_raw_vector::small_raw_vector<SlabAllocatorWrapper>

Operations

+ insert(spec : const Spec&, variables : const Record&) : void

+ text_description(summary_spec : const Spec&, os : std::ostream&) : std::ostream&

+ TimeSeries(nanocubeNumber : int)

+ value(spec : const Spec&, a : int, b : int, var_index : int) : const uint64_t

Spec

Attributes

+ no_variables : int

+ storage_size : int

+ variable_storage_offsets : offset_ptr<int>

+ variable_storage_sizes : offset_ptr<int>

Operations

+ copyFrom(spec : const Spec&, nanocubeNumber : int) : void

+ init(no_variables : int, storage_size : int, variable_storage_sizes : int*, variable_storage_offsets : int*) : void

+ init() : void

+ read_variable(ptr : const char*, index : int, output : uint64_t&) : void

+ Spec(storage_sizes : std::vector<int>, alloc : std::function<void*(std::size_t)>&)

+ write_variable(src : uint64_t, index : int, target : char*) : void

RootNode

Attributes

Operations

+ getContent() : offset_ptr<Node<Summary>>

+ getContentOwnership() : OwnershipType

+ getOwner() : offset_ptr<Node<Summary>>

+ isContentProper() : bool

+ isContentShared() : bool

+ RootNode(nanocubeNumber : int)

+ setContent(content : offset_ptr<Node<Summary>>, otype : OwnershipType) : void

+ setOwner(owner : offset_ptr<Node<Summary>>) : void

+ shallowCopy(other : const offset_ptr<RootNode>) : void

Summary:Class=TimeSeries

Address

Attributes

+ data : std::vector<std::vector<int16_t>>

Operations

+ Address(data : std::vector<std::vector<int16_t>>)

+ appendDimension() : Address&

+ appendLabel(label : int16_t) : Address&

+ dimensions() : const size_t

+ levels(index : int) : const size_t

+ operator[](index : size_t) : DimAddress&

AddressVariables

Attributes

+ variables : std::vector<uint64_t>

Operations

std::queue

Attributes

Operations
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Nanocube

Attributes

+ annotation : offset_ptr<char>

+ nanocubeNumber : int

Operations

+ allocateInternalNode() : InternalNode<Summary>

+ allocateLeafNode() : LeafNode<Summary>*

+ allocateRootNode() : RootNode<Summary>

+ allocateSummaryNode() : SummaryNode<Summary>

+ create(slab_allocator : Allocator*, dim_no_levels : const std::vector<int>&, summary_spec_type : const summary_spec_type&, nanocubeNumber : const int) : Nanocube*

+ getAnnotation() : const std::string

+ getNode(addr : const Address&) : offset_ptr<Node<Summary>>

+ insert(addr : const Address&, variables : const Summary::Record&) : void

+ Nanocube(nanocubeNumber : int, slab_allocator : Allocator*)

+ query() : Query<Summary>

+ setAnnotation(annotation : std::string) : void

- free(node : offset_ptr<Node<Summary>>) : void

- shallowCopy(node : const offset_ptr<Node<Summary>>) : offset_ptr<node_type>

Summary:Class=TimeSeries

DimensionSpec

Attributes

+ levels_per_dimension : int*

+ no_dimensions : int

Operations

+ init(no_dimensions : int, levels_per_dimension : int*) : void

ThreadsafeQueue

Attributes

+ cond_ : std::condition_variable

+ mutex_ : std::mutex

+ popCount : std::atomic<uint64_t>

+ pushCount : std::atomic<uint64_t>

Operations

+ getObjectCount() : uint64_t

+ hasElement() : bool

+ pop() : T

+ pop(item : T&) : void

+ push(item : const T&) : void

+ push(item : T&&) : void
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Kernel

Attributes

+ messages : std::vector<std::string>

+ messages_mutex : std::mutex

+ options : Options&

+ schema : ::nanocube::Schema&

+ shared_mutex : boost::shared_mutex

Operations

+ Kernel(&nanocubes : std::vector<nanocube_type*>, schema : nanocube::Schema&, options : Options&)

+ message(st : const std::string&) : void

+ printMessages() : void

NanocubeIngest

Attributes

+ done_inserting_queues : std::atomic<bool>

+ finished : std::atomic<bool>

+ input_stream : std::istream&

+ inserted_points_queues : std::atomic<std::uint64_t>

+ num_Records_To_Be_Inserted : std::atomic<std::uint64_t>

+ points_per_second : std::atomic<std::uint64_t>

+ sw : stopwatch::Stopwatch

+ threads : std::vector<std::thread>

Operations

+ drawProgressbar(x : uint64_t, n : uint64_t, ss : std::stringstream&, w : uint64_t) : void

+ getPartitionFunction(input_stream : std::istream&, num_Records_To_Be_Inserted : std::uint64_t) : partition_function::PartitionFunction<quadtree::Path>*

+ getPartitionFunction(split_points : std::string&) : partition_function::PartitionFunction<quadtree::Path>*

+ NanocubeIngest(kernel : Kernel&, input_stream : std::istream&)

+ reportStatus() : void

+ run() : void

+ run_async() : std::thread

+ threadInsert(threadNumber : int) : void
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Nanocube Server

Server

Attributes

+ handler : RequestHandler

+ is_timing : bool

+ keep_running : bool

+ mongoose_threads : int

+ mutex : std::mutex

+ port : int

+ timing_of : std::ofstream

Operations

+ currentDateTime() : const std::string

+ currentDateTime2() : const std::string

+ handle_request(request : Request &) : void

+ init(mongoose_threads : int) : void

+ isTiming() : bool  const

+ run() : void

+ setHandler(request_handler : const RequestHandler&) : void

+ stop() : void

+ toggleTiming(b : bool) : bool

NanocubeServer

Attributes

+ done : bool

+ finish : bool

+ MaskCache : mask_cache

+ words : std::vector<std::string>

Operations

+ deregister_alias() : bool

+ initializeQueryServer() : void

+ NanocubeServer(kernel : Kernel &)

+ parse_program_into_query(program : const lang::Program &, query : query_type &…

+ register_alias() : bool

+ run() : void

+ run_async() : std::thread

+ serveQuery(request : Request &, program : lang::Program &) : void

+ serveSchema(request : Request &) : void

+ serveShowMemoryUsage(request : Request &) : void

+ serveTiming(request : Request &) : void

+ stopQueryServer() : void

TreeStore

Attributes

+ level_names : std::vector<std::string>

+ root : std::unique_ptr<node_type>

Operations

+ clear() : void

+ empty() : const bool

+ getNumLevels() : const int

+ operator =(e : const TreeStore &) : TreeStore&

+ setLevelName(level : int, name : std::string) : void

+ TreeStore(value : value_type)

+ TreeStore(num_levels : int)

+ TreeStore(e : const TreeStore&)

+ TreeStore(e : TreeStore &&)

+ TreeStore &operator =(e : TreeStore &&)

+ ~ TreeStore()

- createRoot() : node_type*

TSeriesCollector

Attributes

+ builder : std::unique_ptr<tree_builder_type>

+ tree : std::unique_ptr<tree_type>

Operations

+ pop() : void

+ push(label : const label_type&) : void

+ reset(levels : int) : void

+ store(query : const query_type&, summary : const summary_type&) : void

+ store_value(query : const query_type&, value : uint64_t) : void

Request

Attributes

+ notes : std::string

+ request_string : const std::string

+ response_size : int

- conn : mg_connection *

Operations

+ Request(conn : mg_connection *, request_string : const std::string&)

+ respondJson(msg_content : std::string) : void

+ respondOctetStream(ptr : const void *, size : std::size_t) : void

+ respondText(msg_content : std::string) : void

Type

«enumeration»

Literals

JSON_OBJECT=0

OCTET_STREAM=1

Program

Attributes

Operations

+ Program(name : std::string)

+ setFirstCall(call : Call*) : Program&

Node

Attributes

+ type : Type

Operations

+ Node(type : Type)

Type

«enumeration»

Literals

CALL

LIST

NUMBER

PROGRAM

STRING

Call

Attributes

+ name : std::string

Operations

+ addParameter(param : Node*) : Call&

+ Call(name : std::string)

+ setNextCall(call : Call*) : Call&

Parser

Attributes

+ call : qi::rule< iterator_type >

+ expression : qi::rule< iterator_type >

+ list : qi::rule< iterator_type >

+ name : qi::rule< iterator_type, std::string() >

+ start : qi::rule< iterator_type>

+ string : qi::rule< iterator_type >

Operations

+ number : qi::rule< iterator_type, double()>()

+ parse(begin : iterator_type, end : iterator_type) : void

+ Parser()

+ registerNodeAST(node : T*) : T*

+ reset() : void

Iterator:Class

kernel

1

has

first_call1

points to

<<uses>>

next_call 1

points to

params 

0..*

has
program 1

points to last parsed program

stack 0..*

has

ast_nodes 0..*

has

<<uses>>

Server 1
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